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Abstract

Fluid transport in the earth’s crust is either extremely rapid, or extremely slow. Cracks, dikes and joints represent the
former while tight crystalline rocks and impermeable fault gouge/seals represent the latter. In many cases, the local
permeability can change instantaneously from one extreme to the other. Instantaneous permeability changes can occur
when pore pressures increase to a level sufficient to induce hydro-fracture, or when slip during an earthquake ruptures a
high fluid pressure compartment within a fault zone. This ‘toggle switch’ permeability suggests that modeling
approaches that assume homogeneous permeability through the whole system may not capture the real processes
occurring. An alternative approach to understanding permeability evolution, and modeling fluid pressure-controlled
processes, involves using local permeability rules to govern the fluid pressure evolution of the system. Here we present a
model based on the assumption that permeability is zero when a cell is below some failure condition, and very large
locally (e.g. nearest neighbors) when the failure condition is met. This toggle switch permeability assumption is
incorporated into a cellular automaton model driven by an internal fluid source. Fluid pressure increases (i.e. from
porosity reduction, dehydration, partial melt) induce a local hydro-fracture that creates an internally connected
network affecting only the regions in the immediate neighborhood. The evolution, growth, and coalescence of this
internal network then determines how fluid ultimately flows out of the system when an external (drained) boundary is
breached. We show how the fluid pressure state evolves in the system, and how networks of equal pore pressure link on
approach to a critical state. We find that the linking of subnetworks marks the percolation threshold and the onset of a
correlation length in the model. Statistical distributions of cluster sizes show power law statistics with an exponential
tail at the percolation threshold, and power laws when the system is at a critical state. The model provides insights into
mechanisms that can establish long-range correlations in flow networks, with applications to earthquake mechanics,
dehydration, and melting. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fluids (and their pressure state) play a domi-

nant role in many geological, geophysical, and

* Corresponding author. Fax: +41-1-633-1108; petrologic processes [1,2]. Substantial evidence
E-mail: steve@erdw.ethz.ch suggests that fluid pressures in many parts of
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the crust are close to lithostatic [3-5], and ubig-
uitous evidence in the form of mineral bearing
veins point to hydro-fracture as a primary means
of fluid transport [6]. Over-pressured fluid affects
the mechanical strength of rock, and was pro-
posed by Hubbert and Rubey [7] as the mecha-
nism responsible for overthrust faulting. Over-
pressuring in sedimentary basins is widespread be-
low depths of 1-2 km [8], and abrupt vertical and
lateral transitions form distinct pore pressure
states within sedimentary sequences [9]. Thin
faults or hydrothermally altered seals add to the
spatial and temporal variations in crustal hydraul-
ics. Rapid changes in pore pressure are suggested
as an important precipitation mechanism in gold
deposits [10,11], and dilatancy hardening is a well-
known phenomenon associated with crustal fault-
ing [12,13]. Reaction-induced hydro-fracture in
high-pressure anatectic melting experiments [14]
confirms that this mechanism exists, and may be
important in fluid-controlled crustal processes.

A principal problem in modeling fluid-con-
trolled crustal processes is that the nature in
which fluids move in the crust is controlled by a
parameter that spans about five orders of magni-
tude for common geologic materials. In general,
permeability (k) ranges from about 10~'% m? for
common sandstone to less than 107'° m? in shales
and clays [15,16]. This problem is compounded by
evidence that fluid flow in the crust is channeled
[17] and episodic [18], resulting in strong spatial
and temporal variations in pore pressure and hy-
draulic properties. Given such an uncontrolled
parameter, fluid flow models developed for mid-
crustal levels can generate a wide range of results,
with potentially little or no validity. Here we
present a simple model where the internal perme-
ability network develops within the system in re-
sponse to some physical or chemical process. Spe-
cifically, we consider an increasing pore pressure
mechanism through porosity reduction or a direct
fluid source that increases pore pressure until hy-
dro-fracture. To model rapid changes in hydraulic
properties, permeability is treated as a toggle
switch (e.g. on or off), being either zero or very
large to nearest neighbors. That is, permeability is
zero while the fluid pressure state is below some
failure condition, and locally very large when the

fluid pressure reaches this condition. Conceptu-
ally, this translates to two extreme flow states in
the crust. Over short time scales in an imperme-
able medium, fluid flow is restricted, and pore
pressures increase at rates that depend on the flu-
id source rate and the compressibility of the me-
dium. At the time of failure, fluid flow is rapid to
the immediate neighborhood. The reduced fluid
pressures that accompany an increase in crack
porosity or sudden hydraulic connectivity to a
low-pressure region thus limit flow to the imme-
diate neighborhood. Whether the high fluid pres-
sure perturbation propagates depends on the state
of the neighbor: (1) If the neighbor is sufficiently
far from failure, the crack (or fluid flow) is ar-
rested, or (2) if the state of the neighbor is also
near the failure condition, then the instability can
propagate.

The purpose of this paper is to demonstrate the
basic behavior of a model based on the toggle
switch permeability assumption, presented as a
cellular automaton model, and describe how this
model behaves in terms of permeability evolution,
self-organization, and critical states. The model
has no inherent length scale above the grain scale,
so its utility is limited to understanding evolution-
ary processes to a critical state and a study of
model statistics. We have purposely reduced the
problem to the simplest possible scenario, exclud-
ing for now processes that can be initiated by
rapid fluid pressure reductions, such as precipita-
tion, dissolution, dehydration, melting, or dila-
tancy hardening. Coupling the model to some of
these processes is addressed elsewhere [19,20].

2. Conceptual model

The cyclic (or toggle switch) model for perme-
ability is postulated as a possible mechanism op-
erating within the crust or in fault zones. For
earthquakes [21,19], fault compaction increases
pore pressure in zero permeability cells during
quiescence [22,23]. Permeability is transiently
very large when dilatant slip accompanies an
earthquake [12,13,24,25]. After fluid pressures
are redistributed among cells participating in the
event, rapid sealing toggles permeability back to
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Fig. 1. Conceptual model of toggle switch permeability used
for modeling fluid-controlled crustal processes. (a) Earth-
quakes. Fault zone compaction or other fluid sources in a
low permeability fault zone increase fluid pressure in discrete
compartments. High fluid pressures induce a dilatant slip
event that locally increases permeability and equilibrates fluid
pressure in the immediate neighborhood. Healing and sealing
then reduce permeability. (b) Dehydration/melting. Isolated
nucleation sites from a dehydration or melting reaction in-
crease pore pressure and can induce local hydro-fracture.
Hydro-fracture increases the local permeability, and with
continued reaction, the crack network grows and coalesces.

zero. Fluid flow within the fault plane is thus
episodic and only transiently over-pressured. For
dehydration, melting, or other phase transitions
with positive Clapeyron slopes (Fig. 1b), scattered
nucleation sites within the body generate local
over-pressures at time of the reaction [26]. These
sites are initially hydraulically disconnected, both
to a drained boundary or to other sites (k~0).
Increased fluid pressure can buffer the reaction
unless it is sufficient to induce hydro-fracture
[14]. If hydro-fracture occurs, then the site is hy-

draulically connected to the local environment,
thus reducing fluid pressure via increased crack
porosity or hydraulic connectivity to low-pressure
regions. The reduced fluid pressure has the same
thermodynamic effect as an increase in tempera-
ture (although much reduced), and the dehydra-
tion/melting reaction continues. The resulting pos-
itive feedback is an evolving system where the
permeability network is created internally from
the loop of fluid pressure increase — hydro-frac-
ture — fluid pressure decrease — kinetics. In this
case, rapid sealing from precipitation can reduce
permeability, or the toggle switch permeability
comes into play because permeability is zero be-
tween simultaneously evolving crack networks
that are hydraulically unconnected. When isolated
networks become connected, then k is very large
within this subsystem, but is still zero between
similar systems developing independently within
the body. Scale invariance can be seen conceptu-
ally to emerge because the same mechanisms are
operating whether one considers the interaction of
two individual cells, two interacting networks of
many cells, or many isolated networks of unlim-
ited cells. Eventually all subnetworks merge, cre-
ating a permeable pathway where the macroscopic
value for k becomes applicable. Merging of inter-
nal networks results in a percolation-type thresh-
old within the system [27,28].

3. A cellular automaton model of fluid flow

These concepts are well modeled with cellular
automata [29-32]. Cellular automata are simply
numerical bookkeeping algorithms to distribute
a parameter to nearest neighbor cells once some
prescribed condition is reached. Typically, a ran-
dom distribution of a parameter is assumed scat-
tered in a two-dimensional matrix (although it
can be extended to three dimensions). The system
is then driven by this parameter until a failure
criterion is satisfied, where the ‘load’ is redistrib-
uted to nearest neighbors. These extremely simple
models produce complex and rich behavior, and
are commonly used in studying critical phenom-
ena and phase transitions. The original Ising
model for a ferromagnet is an example of a cel-
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lular automaton. In this paper a cellular autom-
aton model is proposed for crustal fluid flow,
where the driving parameter is pore pressure with-
in the system.

The physical basis for this model derives from a
formulation of the diffusion equation that in-
cludes source terms from time-dependent porosity
reduction ¢, or a direct fluid source I". Various
derivations are given elsewhere and are not re-
peated here [33-35]. The equation is:

Py 1 k_, . .

9t - ¢(,B¢ +ﬁf) VV Pf (¢plast1c F) (1)
where the first part in brackets describes pore
pressure reduction through diffusion, and the sec-
ond part in brackets represents pore pressure in-
creases from a fluid source. In Eq. 1 ¢ is porosity,
By and B are the pore and fluid compressibility
(By = (1/9)(3¢/0P)), v is the viscosity, and k is the
intrinsic isotropic permeability of the matrix. For
an impermeable matrix (k~0), Eq. 1 reduces
to:

(f_¢)i
oiPi

where 7 is the cell matrix index and the compres-
sibility has been lumped into a single parameter
B=Bs+Br [34]. When porosity is reduced in a
system faster than the permeability network can
transport it away (k=0; ¢<0), pore pressures
increase at rates proportional to the storage ca-
pacity of the rock (¢f). Proposed mechanisms for
porosity reduction include healing and sealing of
cracks [33], pressure solution [5,36-38], compac-
tion by sedimentation [39,40], and compaction
creep of fault gouge [41-43]. In such systems,
pore pressures can increase until they overcome
the least principal stress and initiate hydro-frac-
ture. In the case of earthquakes, pore pressure
increases reduce the frictional resistance to sliding
and can induce a dilatant slip event [21,24]. In
both cases, fluid pressures are reduced rapidly
with local permeability increases (k= ). The
new permeability network may include opening
old pathways, or creating new ones. The cycle
of reduced porosity, hydro-fracture, and repeated

2)

Py
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porosity reduction is proposed as the mechanism
for the observed episodic crustal fluid flow [13,18].
Field evidence of spatially varying, episodic fluid
flow within mature fault zones supports the as-
sumption in Eq. 2 that permeability is sufficiently
small as to be approximated as zero [22,44]. Ex-
amples of a direct fluid source include a fluid
source at depth [45], or devolitization reactions
[46].

When the failure condition is reached, fluid
pressures instantaneously equilibrate with nearest
neighbor cells. This can be viewed as a diffusion
time of one time step and fixes a relationship be-
tween the diffusion length and the size of the
smallest model element [47]. The equilibrium pres-
sure, determined by conserving fluid mass (and
ignoring gravity), is:

= 2t (0B):Pi
D SENTY) G)

where P is the average pressure of the affected
cells, P; is the pre-failure pore pressure in cells i,
and m is the number of cells involved in the re-
distribution. We do not currently include in-
creases in crack porosity associated with an event,
so any fluid pressure reductions result solely from
hydraulic connectivity with lower-pressure re-
gions. Including other important mechanisms
such as increased crack porosity, mechanical
strength variations, and time-dependent healing
would allow larger fluid pressure variations, but
are currently not explicity modeled.

The numerical algorithm is as follows: (a) cal-
culate increase in fluid pressure in each cell (Eq.
2), (b) check for cells meeting the failure condition
and monitor the size of the connected regions,
(c) for failed cells, redistribute fluid pressure
among nearest neighbors (Eq. 3), (d) repeat (b)
and (c¢) until all cells are below the failure condi-
tion, and (e) advance to next time step. During
the redistribution phase, cluster size is determined
by counting the distinct number of cells involved
in the event. The algorithm keeps track of the
state of each cell, and after applying Eq. 3, the
matrix is scanned to see if the high pore pressure
zone propagates, or stabilizes. Initially, only local-
ized events occur because the system is hydrauli-
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Fig. 2. Histograms of initial pore pressure increase rates of four cases considered. The rates were determined by choosing a ran-
dom distribution of source terms (numerator) or material properties (denominator) in Eq. 2. The distributions of the source term

and material properties are shown in the insets.

cally disconnected. As the system evolves, evolv-
ing subsystems link to a point where communica-
tion between cells can propagate spontaneously
through the system, creating a hydraulically con-
nected body.

4. Model input

We investigated a matrix of 300 X 300 cells. The
free parameters reduce to assumptions about the
fluid sources, initial porosity, and the compressi-
bility of the pore space and fluid. Although many
processes are involved in increasing pore pressure
with time, we have chosen to simplify the system
by investigating a range of pore pressure increase
rates (Fig. 2) determined by assumed initial dis-
tributions of either the numerator or denominator
in Eq. 2. In cases I and 1V, normal and uniform
distributions of compressibility, respectively, were

assumed in a matrix with a constant source term.
In cases II and III, normal and uniform distribu-
tions of the source term, respectively, were as-
sumed in a matrix of constant compressibility.
Compressibility of the pore space and fluid are
relatively well constrained within a range of val-
ues [15], and were restricted in cases I and IV to
1X1072 MPa '=B=1x10"3 MPa"! [34]. For
cases II and III, compressibility was constant at
B=5%10"3 MPa~!. For the source term, we as-
sumed porosity reduction rates on the order of
geologic strain rates (~1x10"" s71) con-
strained in cases II and III to 1x1078
yr'=I—¢=<1x10"% yr~!, and held constant
for cases I and IV to I'—¢ =1x107° yr~!. The
initial porosity was chosen at 2% for all cases.
Fig. 2 shows the input distributions of parame-
ters, and the resulting distributions of pore pres-
sure increase rates. The failure condition was ar-
bitrarily set at the overburden pressure at a depth
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of 10 km (270 MPa). This choice of failure con-
dition has no effect on the overall model behavior.
The initial cell fluid pressures were evenly distrib-
uted between lithostatic and hydrostatic pore
pressure to represent the range of possible fluid
pressure states in the crust. In the different cases
presented, numerous processes that contribute to
a non-uniform pore pressure build-up have been
grouped into a distribution of pore pressure in-
crease rates. These different rates were determined
by assuming a different distribution of sources
and compressibilities, ignoring for now random
differences in initial porosity, porosity creation
with hydro-fracture, changes in the mechanical
strength of the rock, and time-dependent healing.
Grouping these processes into a single term cap-
tured the overall behavior of the model, but spe-
cific cases are left to future work.

Eq. 2 provides a model time scale in years, and
the time step was chosen at 0.1 yr for all cases.
The effects of choosing a range of time steps was
not fully explored, but for cases where a time step
of 1 yr was chosen showed no effect on the overall
evolution of the system. However, some quantita-

tive details are affected by the time step and dis-
cussed below.

5. Results

In the absence of a condition for reducing the
fluid pressure of the system (e.g. a drained bound-
ary or porosity creation), Eq. 2 requires that the
average pressure of the system monotonically in-
creases until the system reaches the failure condi-
tion. However, individual cells in the matrix can
both increase and decrease in pressure depending
on the porosity reduction rate and connectivity
with other parts of the matrix at different fluid
pressure states. This is shown in Fig. 3 where
the pressure history of three arbitrarily chosen
cells is shown superposed on the average system
pressure. The path of individual cells shows ran-
dom increases and decreases that depend on the
pressure state of the cells to whom they have been
connected (Eq. 3), but must necessarily converge
to the average pressure state at the end of the
simulation. Such pressure reductions were envis-
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Fig. 3. Pore pressure profiles of arbitrary cells in the matrix and the average pore pressure of the system. The average pressure
of the entire matrix steadily increases toward the failure condition, while the paths of individual cells can include abrupt pore
pressure increases or decreases that result from connectivity to separately evolving subnetworks. Ultimately, the average system
pressure must reach the failure condition because of the no-flux external boundary condition.



S.A. Miller, A. Nurl Earth and Planetary Science Letters 183 (2000) 133-146 139

<95%[ MR T W Hydrofracture

Fig. 4. Snapshots of pressure state showing the late time evolution of large networks of connectivity approaching the failure con-
dition (e.g. within 5%). Little structure is observed prior to frame a because the cells that fail are isolated in space and hydraulic
communication with neighbor cells lowers the pressure and heals it. Once the system is self-organized (a—) and large regions of
connectivity are established, a structure is observed, which grows in scale (d-f). On approach to the critical state (g-h), the scale
of interaction has increased to the size of the matrix and the whole system nears failure (i). The corresponding times of these
frames are indicated in Figs. 5b and 6b. The color bar ranges from <95% of the failure condition to >99% of the failure con-

dition.

aged in qualitative models of episodic fluid flow in
the crust [13]. Convergence to the average system
pressure will be discussed shortly in the context of
increasing correlation and linking of subnetworks
on approach to a critical state (e.g. when the sys-

tem is at incipient failure). The subtle increase in
the overall pore pressure increase rate of the sys-
tem results from the functional dependence of the
rates on porosity, which itself is being reduced

(Eq. 2).
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For the following discussion, an event is defined
as the failure (via hydro-fracture) of at least one
cell. If the failure of a cell and subsequent pres-
sure redistribution initiates failure of neighbor
cells during the same time step, then the number
of connected cells are counted when equilibrium is
achieved, and a cluster is defined as the size of the
connected cells. That is, if pressure equilibration
between neighbor cells is still above the failure
condition, then pressure is redistributed to the
next nearest neighbors. This continues until pres-
sure equilibration of the subnetwork falls below
the failure condition. The number of cells in-
volved in this redistribution sequence is a cluster.
Connectivity within the system is monitored in the
numerical algorithm, thus ensuring that at least
one cell length separates the boundaries between
clusters.
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The general model behavior (for case II) is
shown visually as snapshots in time of zones of
incipient failure (Fig. 4a—i). This visual map of the
pressure state corresponds to the late time quan-
titative description in Fig. 3. The full animation of
this simulation can be found at http://www.
erdw.ethz.ch/ ~ steve/press.htm. At early times,
cells approaching failure are isolated in space, so
when a cell fails, pressure equilibration with
neighbor cells does not propagate and cluster
size is limited to one or a few cells. After sufficient
time has passed, clusters begin to appear (Fig. 4a—
c) that converge onto a defined structure of incip-
ient failure within the system (Fig. 4d-f). Once
this structure is established (e.g. Fig. 4f), it grows
in time (Fig. 4g-h), until a critical state is reached
(Fig. 41) whereby the system as a whole is nearing
the failure condition. These snapshots are quanti-

a) Case |

500

Number of Events

16.5

17

1000
b) Case Il

Figure 4

500

.0

125
1000

c) Case lll

500

0
11.5
1000

—]
125 13 13.5

d) Case IV

500

18
Time (yr) x 10°

18.5 19
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creases until a drastic reduction occurs and which marks the percolation threshold and the onset of a correlation length. A longer
range of interaction reduces the effects of individual cells because the pore pressure grows at the effective rate of clusters. A simi-
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of the same effect of linking correlated networks. That is, large sub-

networks begin to merge and thus change (again) the scale of interaction. The times of the snapshots shown in Fig. 4 are indi-

cated in frame b.
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fied as a time line of the number of events (Fig.
5), the cumulative cluster size (Fig. 6), the statis-
tical distributions of cluster sizes (Fig. 7), and a
quantification of the cluster size distribution for
case II (Fig. 8). Each of these will be discussed in
turn, but the reader should refer to Figs. 3 and 4
for the following discussion of how this system
behaves.

6. Discussion

A general model behavior, independent of the
input, is the manner in which the evolved struc-
ture in Fig. 4 relates to the (self-) organization of
the system. Fig. 5 shows the time line of the num-
ber of events for each of the four cases, with the
time of each snapshot of Fig. 4 indicated on Fig.

5b. The overall shape of the time line of events is
the same for all cases. At early times (not shown),
the rate is constant and reflects the random fail-
ures of cells. As the system evolves, the rate of
failure grows steadily as the average system pres-
sure increases and a larger number of cells fail (or
fail again). The acceleration in the number of
events is followed by an abrupt reduction late in
the simulation. Coincident, but not coincidently,
the reduction in the number of events occurs at
the time when the structure of incipient failure is
first established (Fig. 4c—d). As will be shown, this
marks the onset of a correlation length, and iden-
tifies the percolation threshold of the system. At
the percolation threshold, the system is reset at a
new scale of interaction. These subsystems then
grow in unison, link with other such subsystems
evolved elsewhere in the matrix, and evolve to-
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ward a critical state. In Fig. 4d—i, this transition is
observed as growth of an established structure,
and is seen both in the rate at which cells are
failing (Fig. 5), and the rate at which failing cells
are accumulating (Fig. 6). Fig. 6 is the cumulative
sum of all cells that failed during the simulation,
and the derivative represents the rate at which
cells are failing. The cusp seen in Fig. 6 marks
the percolation threshold and the onset of a cor-
relation length in the model. The increasing cor-
relation length (e.g. connected subnetworks) effec-
tively reduces the number of cells that can act
independently, and thus reduces the number of
individual events that can occur. Following the
obvious initial reduction in the number of events,
another more subtle drop is observed (Fig. 5) that
indicates still another scale of interaction from the
merging of correlated subnetworks. Ultimately,
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the system reaches a critical state where the scale
of interaction is the size of the matrix.

The physical basis for this behavior rests with
the self-organization of the system. While zones of
incipient failure tend to organize into a correlated
structure, they surround (and are surrounded by)
zones of low pressure that are also organizing.
When the two networks at different pressures
meet, the subnetworks merge and equilibrate at
a fluid pressure defined by the pressures involved,
but below the failure condition. With continued
pressure build-up, correlation among cells in-
creases and large portions of the system act to-
gether and approximately follow the average pres-
sure of the system. In other words, this healing
effect is pronounced at or above the percolation
threshold because correlated zones of high pres-
sure tap into low-pressure zones, thus equilibrat-
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Fig. 7. Evolution of the cluster size distributions for the four cases, shown as distributions of cluster size (S) and the number of
events (N) greater than S. The distributions were determined for the model catalog up to the times indicated by x’ in Fig. 6.
The cluster size is determined by the number of connected cells that fail during one event. In all cases, the final distribution of
cluster sizes show power laws over many orders of magnitude, but with slightly different structure at the largest events.
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ing a large part of the matrix at a lower pressure.
This occurs only when the system is correlated
because a large number of cells need to be in-
volved to significantly alter the pressure late in
the system evolution. The observed large pressure
reductions early in the simulation (e.g. Fig. 3)
represent only local equilibration, so only local
healing is possible while healing of the overall
system is not observed.

The behavior of the system can be quantified by
investigating the evolution of cluster size distribu-
tions (Fig. 7). The distributions were determined
for the entire record up to the times indicated by
x” in Fig. 6, and span the percolation threshold
(indicated by the square). When a cell fails at
early times, pressure redistribution with nearest
neighbors typically reduces pressure of the af-
fected cells. Therefore, the cluster size is one and
the early part of the record is dominated by
events of size one (or a few), with no large events.
This results in a very steep slope of the cluster size
distribution. As correlation among cells is estab-
lished and grows, larger events are recorded and
this results in a wider range of event sizes. As the
whole system approaches the failure condition,
failure of one cell can initiate failure of neighbor
cells, which can then chain-react through the ma-
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trix and generate clusters of all sizes up to the size
of the matrix.

The cluster size distributions in Fig. 7 are well
fit by a simple correlation relationship:

D(S) = S~ %exp(—S/L) 4)

where S is the cluster size, o is the power law
exponent, and L is a correlation length. Eq. 4 is
often used in statistical percolation models and
critical point phenomena [48,49]. Fig. 8 shows
the distribution for case Il superposed with a fit
of Eq. 4 resulting in estimates of the correlation
length in the model. The fitted distributions cor-
respond to the times shown in Fig. 6b, spanning
the cusp that we identify as the percolation
threshold. Fig. 8 shows that a significant correla-
tion length is established around the cusp of Fig.
6, and grows rapidly following the cusp. In a clas-
sic bond percolation model [48], power law statis-
tics are found at the percolation threshold. Power
law statistic are also found here, but the power
law is appended with an exponential tail con-
trolled by the correlation length. That is, the local
correlations created by resetting connected ele-
ments at the same fluid pressure introduce similar
effects at the smaller scale. As the correlation
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Fig. 8. Fit of Eq. 4 to the cluster size distribution in Fig. 7b. The fit shows how the correlation length increases beyond the per-
colation threshold up to the critical state where the system is at the failure condition and a power law is observed.
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length increases (Fig. 8), the power law extends to
larger sizes. Ultimately, the system acts as a single
unit (L — ) and shows power law distributions
of cluster sizes that span the size of the matrix
(approximately five orders of magnitude and
10°-10° individual events). If the system size was
extended, the same power laws would result.
Some deviations from a power law when the sys-
tem is at failure are observed (e.g. cases I and III),
and show both sub- and supercritical behavior as
discussed elsewhere [50,51]. The slope of the
power law depends somewhat on the time step.
For larger time steps (e.g. 1 yr), slopes of around
—1.2 are observed that reflect the coarser merging
of networks as the system approaches failure.

7. Conclusions

We have presented here a simple model that
follows through on the common observation
that hydro-fracturing and other sudden changes
in hydraulic properties probably play an impor-
tant role in crustal hydraulics. The model is based
on a basic assumption that crustal permeability
can be approximated as very small (i.e. effectively
zero), or very large (i.e. effectively infinite), with
the transition between the two extremes activated
by processes such as dilatant slip during earth-
quakes or hydro-fracture. The actual limits of
the toggle switch are not well known, but can
be argued to be in the range of 1078
m?© 1071 m?. The toggle switch permeability is
supported by numerous field observations, and
provides a strong non-linearity necessary to pro-
duce the resulting complex statistics. The model
results present a plausible scenario for crustal
fluid flow, with implications for most fluid-
controlled crustal processes. We show that the
average behavior of the system pressure is in-
distinguishable from a continuum approach, but
also show that sudden, large amplitude fluc-
tuations occur in response to the linking of in-
dependently evolving subnetworks. These high-
frequency perturbations govern the internal con-
nectivity structure. The evolution of the connec-
tivity structure shows the onset of a correla-
tion length at the percolation threshold that can

be described as a power law with an exponential
tail. After the percolation threshold, the correla-
tion length increases until the entire system is at
the verge of failure where we observe power law
statistics of cluster size distributions, indicat-
ing scale invariance. Physically, scale invariance
means that the snapshots in Fig. 3 could be
viewed either as an entire system itself, or as
merely a minor subsystem operating within a larg-
er network. That is, the snapshots could be both a
representation of the processes occurring at the
level of pore structure, or at the level of large
scale fluid pressure development and expulsion
within the crust. When the fluid pressure state
of the system is about to reach the failure condi-
tion (Fig. 4i), then it could equally represent in-
cipient failure of one computational cell, or a
large system that is on the verge of meeting its
nearest neighbor. The no-flux model boundaries
require that the fluid pressure within the system
ultimately reaches the failure condition. In the
earth, drainage occurs over long time scales, and
an eventual balance is reached between sources
and sinks, thus resulting in a state of criticality
over geologic time scales.

This model shows critical behavior in the same
sense as other cellular automata models [29] that
produce power law statistics at a critical state,
and can be described in terms of critical state
phase transitions, percolation theory, and renorm-
alization group theory [52]. However, we arrive at
these results from an approach that uses physical
processes to explicity drive the system and show
quantitatively and visually what these theoretical
results show mathematically. The rich behavior of
the model presented here results from the simplest
possible scenario of instantaneous large changes
in local permeability. We investigated a wide
range of inputs for probable crustal conditions,
and show that the general behavior of the model
is independent of that input. The model shows
that the system self-organizes to a state where
the merging of isolated networks resets the scale
of interaction. At this new scale of interaction,
larger events become possible, until at the critical
state all event sizes are possible because the scale
of interaction is on the scale of the model.

The utility of this model is that the rules that
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drive the system are based on simple concepts
with substantial natural observations to back up
the initial assumptions; namely that permeability
can take on extreme values in response to a sud-
den event. A unique aspect of the model is that a
natural large-scale correlation mechanism is in-
herent in the system self-organization, and is
based on the physically probable mechanism of
connecting isolated networks at different fluid
pressures. The model can be further developed
by explicity modeling other processes that are cur-
rently ignored. This includes the simultaneously
evolving stress field in response to the evolving
crack network, and poroelastic effects [53]. Nu-
merous feedbacks and couplings can be included
in future models, with applications to fluid pres-
sure-induced mineral precipitation or melting and
dehydration reactions. As already pointed out,
there exists no length scale in this model above
the grain scale. Although this limits its immediate
ability to compare with geologic observations, it
does serve to point out a physical basis for scale
invariance of permeability and crack networks
often observed in nature. The model has many
potential applications in modeling fluid-controlled
crustal processes. For example, coupling this sim-
ple model to elastic dislocation theory provided a
length scale necessary to develop a deterministic
three-dimensional  fluid-controlled earthquake
model [19], and coupling this model to dehydra-
tion kinetics has produced a dynamical system in
P-T space for understanding permeability evolu-
tion in dehydrating systems [20]. A further cou-
pling to melt kinetics and elastic dislocation
theory [54] provides the necessary length scale
for an envisaged forward and deterministic model
of volcanic seismicity.
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