Sub-diffusive and Sub-advective Model for Fluid Flows in Porous/Debris Media: Some Exact and Numerical Solutions

Khim B. Khattri1, Puskar R. Pokhrel1, Jeevan Kafle1, Parameshwari Kattel1
Bhadra Man Tuladhar1, Shiva P. Pudasaini1,2

1School of Science, Kathmandu University, Dhulikhel, Kavre, GPO Box 6260, Kathmandu, Nepal.
2Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn, Meckenheimer Allee 176, D-53115 Bonn, Germany.
Correspondence to: Khim B. Khattri, khim_khatri@student.ku.edu.np

Abstract: In geophysical and industrial mass flow processes, both the solid and fluid phases may be involved. By neglecting the solid deformation and inertial forces in the two-phase physical-mathematical model for debris flow (Pudasaini, 2012), a novel sub-diffusive and sub-advective (SD-SA) equation for fluid flows through general porous landscape and debris material is obtained (Pudasaini, 2014). In general, it is not possible to find exact analytical solutions to the full SD-SA model. However, some exact solutions for the reduced sub-diffusion process are constructed. We employ special mathematical techniques, mainly, transformation to classical advection-diffusion equation, separation of variables and linearization, to further construct analytical solutions for the SD-SA model (Khattri, 2014). Some advanced exact solutions are also constructed by using Bring ultra-radical and hyper-geometric functions by generating the Abel and Lineard canonical equations (Khattri, 2014; Pudasaini, 2014). The full SD-SA equations are integrated numerically by applying the high-resolution TVD-NOC schemes. Our numerical solutions match exactly with the exact analytical solutions for sub-diffusion, thereby demonstrating the very high accuracy and performance of the numerical method and computational code. It is revealed that the sub-diffusion and sub-advection processes (as characterized by higher flux exponents) are fundamentally different as compared to the classical diffusion-advection, and that the physics of fluid flows in debris and porous landscape is better described by the sub-diffusion and sub-advection model. The results, their underlying physics and applications may help in constructing early warning and mitigation strategies in potentially catastrophic failures of landslides, reservoir dams and embankments in geo-disaster-prone areas.

Keywords: Flow in porous media, Two-phase flows, Sub-diffusive and sub-advective equation, Exact solutions, High-resolution numerical simulations.

References: