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A B S T R A C T

Drag plays an important role in the dynamics of mixture mass flows composed of viscous fluid and solid particles. Such flows often take place in environmental and
engineering problems. We have analytically derived an enhanced generalized drag that completely describes the drag for any solid volume fraction in mixture mass
flows. This provides a full analytical solution and physical basis for the dynamically evolving complex drag. Previous drag formulations were restricted, and produced
singularities for large values of the solid volume fraction. Our new model removes singularity inherited by existing models. The analytical model shows different
behavior for larger and smaller values of the solid volume fraction, and reveals a smooth variation of the drag coefficient as the solid volume fraction evolves during
the flow. Dense to dilute distribution of particles in the mixture, mass flux and material parameters, including particle and fluid densities, characterize the new
extended model that strongly determine the drag curve. In contrast to the previous models which tend to show singularity, the most important aspect of the new drag
function is that, for any value of the solid fraction, it is sufficiently smooth. We highlight the importance of the new enhanced generalized drag model by comparing it
with existing models. A strikingly new understanding is that for some values of the solid volume fraction, the drag takes its maximum, and then, decreases on either
side of that particular value. Depending on the dilute to dense flows, two fundamentally different families of asymmetrical drag curves emerge. We have explained
the physics behind these special behaviors of drag. With a benchmark simulation, we show that the new enhanced drag offers a great opportunity for the better and
full dynamical simulation of a wide range of mixture mass flows. As the new generalized drag reveals many essential physical phenomena, this can be applied in
appropriately solving some challenging environmental and engineering problems related to complex multi-phase mixture mass flows including landslide and debris
flows.

1. Introduction

Particle-fluid or, bubble-fluid multi-phase mass flow simulation is of
great interest in earth science and environmental engineering, and
energy science and technology. This includes landslides, debris flows,
the nuclear reactors and powerplants (Ganatos et al., 1978; Brennen,
1982; Sangani and Acrivos, 1982a, 1982b; Cook and Harlow, 1984;
Durlofsky et al., 1987; Hsu et al., 2003; Absi, 2005; Kolev, 2007;
Kowalski, 2008; Luca et al., 2015; Mergili et al., 2017; Pudasaini and
Mergili, 2019). In the most often used continuum approaches, the two-
phase mixtures are treated as interpenetrating continua with several
unknown interfacial terms. These terms contain the transfer of mo-
mentum of a phase due to stresses imposed on the phase boundary by
the other phases. Various terms are combined in the generalized in-
terfacial forces acting on the dispersed phase (Drew, 1983; Jakobsen
et al., 1997; Manninen et al., 1996; Hiltunen et al., 2009; Ishii and
Hibiki, 2011; Pudasaini, 2012). This includes buoyancy, the viscous
drag, the virtual mass force, the Basset force, and the lift force. Mod-
elling interactions between liquid-particle, or liquid-gas, requires in-
terfacial models for momentum transfer at their interface (Drew, 1983;
Ishii and Mishima, 1984; Kendoush, 2008) that pose substantial diffi-
culty.

Any theory that aims to describe the dynamics of a system of par-
ticles dispersed in a fluid medium must address the issue of the hy-
drodynamic interactions among particles. Drag is perhaps the most
important hydrodynamic interaction force in mixture flows, that acts at
the particle-fluid interface as interfacial momentum exchange (Ganatos
et al., 1978; Sangani and Acrivos, 1982a; Sangani and Acrivos, 1982b).
This is why in many technical and applied engineering problems,
mainly the drag force is considered (Zhang and Yin, 2013; Mergili et al.,
2017; Bout et al., 2018; Han et al., 2018; He et al., 2018; Ren et al.,
2018).

Two-phase granular-fluid mixture flows, such as landslides, debris
flows and hyperconcentrated floods are characterized primarily by the
relative motion and interaction between the solid and fluid phases
(Drew, 1983; Pitman and Le, 2005; Pudasaini, 2012; de Haas et al.,
2015). In natural debris flows, the solid and fluid phase velocities may
deviate substantially from each other, essentially affecting the entire
flow field (Bout et al., 2018; Mergili et al., 2018a; Yang et al., 2018;
Zheng et al., 2018; Qiao et al., 2019; Wang et al., 2019a, 2019b). De-
pending on the flow configuration and the material involved, several
additional physical mechanisms are introduced. Drag is one of the very
basic and important mechanisms of two-phase mass flow as it in-
corporates coupling between the phases. Depending on the amount of
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grains and the state of flow, Pudasaini (2012) proposed that drag
should combine the solid- and fluid-like contributions, and developed a
new analytical, generalized drag coefficient that can be applied to a
wide range of problems from the simple linear drag to quadratic drag.
This drag coefficient is expressed explicitly in terms of essential phy-
sical parameters, for example, the volume fractions of the solid and
fluid, the solid and fluid densities, terminal velocity of solid particles,
particle diameter, and fluid viscosity. This model has recently been
extensively used in simulations of complex mass flows including several
large natural landslides, avalanches and debris flow events involving
process chains and cascades (Kafle et al., 2016, 2019; Kattel et al.,
2016, 2018; Bout et al., 2018; Khattri and Pudasaini, 2018; Mergili
et al., 2017, 2018b; Pokhrel et al., 2018; Qiao et al., 2019).

The drag can vary substantially depending on the flow dynamics
and the concentration of particles. For a dispersed (or, dilute) flow
regime, the drag force is relatively well-understood and the analysis is
easier. Different constitutive equations and models are presented for the
drag force. Theoretically, it has been shown that for increasing particle
concentrations, the drag coefficient increases (Ganatos et al., 1978;
Sangani and Acrivos, 1982a, 1982b; Durlofsky et al., 1987). However,
the problem becomes increasingly complex as the solid volume fraction
of the dispersed particle-phase increases (Pitman and Le, 2005; Ishii
and Hibiki, 2011; Pudasaini, 2012).

Usually the drag coefficient is a function of the particle concentra-
tion and particle Reynolds number (Drew, 1983). However, the drag
descriptions based on the Reynolds number also contain non-physical
behavior. For vanishing solid fraction, the interfacial drag is equal to
zero. On the contrary, as the solid fraction tends to unity, the Reynolds
number approaches zero, and the drag becomes infinitely large (Ni and
Beckermann, 1991), showing a non-physical or singular behavior. Ex-
perimental data show that the drag coefficient increases as the Reynolds
number decreases (Brennen, 2005), but, does not show exponential
behavior. For a viscous regime, the drag coefficient increases with an
increasing volumetric solid concentration (Ishii and Chawla, 1979; Ishii
and Hibiki, 2011). However, some models predict that as the flow ap-
proaches the Newton's regime, the drag coefficient may increase rapidly
even at relatively low (20%) solid fraction and tends to become infinity
already at about 50% solid volume fraction (Ishii and Chawla, 1979).
This is not realistic. Furthermore, singularities also appear in the simple
(Pitman and Le, 2005; Pailha and Pouliquen, 2009) and the generalized
(Pudasaini, 2012) drag coefficients developed for particle-fluid mixture
mass flows, such as landslides, debris flows and hyperconcentrated
floods.

Sangani and Acrivos (1982a, 1982b) developed drag models as a
function of the volume fraction of arrays of cylinders, both for dilute
and very concentrated distributions of the cylinder. Bossis and Brady
(1984) developed a general molecular-dynamics-like method for si-
mulating the dynamics of suspensions of hydrodynamically interacting
particles. Durlofsky et al. (1987) presented a general method for com-
puting the hydrodynamic interactions (particularly the drag) for dis-
crete suspended many-particle system, under the condition of vanish-
ingly small particle Reynolds number. However, non of these drag
models are complete and smoothly cover the entire domain of the
particle concentrations as a single, well defined, analytical model. Such
a model is lacking, but could legitimately describe the drag phenomena
in a unified way. Here, we develop such a unique drag model.

So, although existing models are mostly applicable to relatively
small solid volume fractions, from the structural point of view, drag
coefficients increase monotonically as a function of solid volume frac-
tion (Ganatos et al., 1978; Sangani and Acrivos, 1982a, 1982b;
Durlofsky et al., 1987; Pitman and Le, 2005; Pailha and Pouliquen,
2009; Pudasaini, 2012). As the particle volume fraction tends to unity,
the drag appears to increase exponentially. Which, however, is not
realistic, because no real hydrodynamic force can approach infinity. So,
either the existing models do not include the whole range of the solid
fraction distribution, i.e., the mixture from dilute to dense, or these

models tend to show singularity (Ganatos et al., 1978; Sangani and
Acrivos, 1982a, 1982b; Durlofsky et al., 1987; Pitman and Le, 2005;
Pailha and Pouliquen, 2009; Pudasaini, 2012). Furthermore, mostly
some empirical values have been used in practice for different types of
mass flows, for both dilute and dense mixture of particles and fluid
(Zwinger et al., 2003; Pudasaini and Hutter, 2007), which, however,
might be questionable as such values lack physical ground.

Thus, modelling of the drag force is still a largely unsolved problem
in science and engineering as there is no consensus on it, mainly for the
complex particle-fluid mixture flows such as landslides, avalanches,
debris flows, and hyperconcentrated flows. The main challenge that still
remains is the construction of a suitable constitutive equation or, a
unified model for the drag coefficient, that covers the whole spectrum
of the flow dynamics. So, a drag coefficient model that covers the entire
distribution of the solid particle concentration is needed. The major
concern is the modelling of the drag force coefficient of a general
nature. Here, we present a simple, enhanced and fully analytical model,
without any singularity, for generalized drag coefficient in mixture
mass flows consisting of viscous fluid and the solid particles that covers
the entire domain of the solid volume fraction. The model is sufficiently
smooth and bounded, with its maximum lying realistically somewhere
between the dilute to dense limits of particles. Comparison of the new
drag model with some existing drag models reveals a much better
physical basis and performance of the new model. We also apply the
new drag model to simple mass flow simulations to show the funda-
mental differences between the new and old drag models. This high-
lights the essence and application potential of the new drag model to
complex and real flow situations such as landslides, avalanches and
debris flows.

2. Importance of proper description of drag in mass flow
simulation

Generally, high fluid content or pore-fluid pressure is the main
cause of the triggering and high mobility of landslides. High water
content presents a great challenge in simulating mass flows. Such flows
can be better simulated with the two-phase particle-fluid mixture mass
flow model (Pudasaini, 2012) that includes generalized drag (Mergili
et al., 2017, 2018a, 2018b; Bout et al., 2018; Qiao et al., 2019). Drag is
one of the most essential aspect of the complex interactions between the
solid particles and viscous fluid in two-phase mass flow, because it
influences the relative motion between the two phases. Because the
drag firmly depends on whether the flow is dilute or dense, the flow
dynamics, extent of deposition and travel distance is strongly controlled
by the state and different formulations of drag.

When a huge and rapid landslide impacts a reservoir and turns into
a subaqueous multi-phase particle-fluid mixture flow, the drag between
particles and viscous fluid plays important role in the overall dynamics
(Zhang and Yin, 2013; Bout et al., 2018; He et al., 2018; Mergili et al.,
2018a, 2018b; Pudasaini and Mergili, 2019). In such a situation, the
application of properly formulated full description of drag, such as the
one proposed here, is essential for the reliable modelling of the complex
mixture mass flows that results in a completely different flow dyna-
mical and deposition processes than without or improper drag models,
mentioned in the previous section. This is the main aspect of this
contribution.

The drag between phases evolves and generally increases with the
higher solid volume fraction, and results in increased resistance of the
fluid motion. Drag plays central role in the transport processes and flow
mobility (Pudasaini, 2012; Pudasaini and Fischer, 2016a; Ren et al.,
2018; Zheng et al., 2018) and the development of the solid-dominated
frontal surge, lateral levee formation, and phase-separation between
solid particles and viscous fluid in debris flows and deposition (de Haas
et al., 2015; Pudasaini and Fischer, 2016b; Wang et al., 2019b). As the
drag can strongly change the local material composition (Pudasaini and
Fischer, 2016b), it directly influences the impact pressure of the
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mixture against obstacles (Kattel et al., 2018; Kafle et al., 2019). Fur-
thermore, drag plays crucial role in debris flow erosion (Pudasaini and
Fischer, 2016a; Han et al., 2018; Yang et al., 2018). So, appropriate
formulation of drag is essential for the proper modelling of phase-se-
paration, erosion, flow mobility, and the reliable engineering design of
the defense structures. The enhanced general drag model developed
here can be applied to various problems in geophysics, and civil and
environmental engineering, such as the dynamic evolution of flow-like
avalanches, debris flows, generation of tsunami waves by landslides,
and subsequent submarine landslide motions (Mergili et al., 2017;
Mergili et al., 2018a, 2018b; Wang et al., 2019a; Pudasaini and Mergili,
2019).

3. Full description of generalized drag

3.1. Model development

First, we define parameters and variables. The suffixes s and f, re-
spectively, denote the solid and fluid constituents in the debris mixture.
Let ρs and ρf are the solid and fluid densities, γ = ρf/ρs is the density
ratio, and ηf is the fluid viscosity. Let us = (us,vs,ws) and uf = (uf,vf,wf)
be the solid and fluid phase velocity fields, αs and αf = (1 − αs) denote
the solid and fluid volume fractions in the mixture, d is particle dia-
meter, and g is gravity. Here, we follow the derivation and formulation
in Pudasaini (2012). So, the generalized drag coefficient, CDG can be
written as:

=C g u u( ) /| | .DG s f s f f s
2 (1)

In order to close the drag, we need to construct an expression for the
term |uf − us|2 in terms of the known physical parameters and the
dynamical variables. For this, we consider the mass balance equations
for the solid and fluid constituents (Pudasaini, 2012):

+ =
t

u( ) 0,s
s s (2a)

+ =
t

u( ) 0.f
f f (2b)

Since αf = 1 − αs, the mass balances in (2) imply that the total
mixture is divergence free, i.e., ∇ ⋅ (αsus + αfuf) = 0. Thus, the net
volume flux must be a constant, say , such that

+ =u u .s s f f (3)

Note that here, is a vector of three components (constants), ob-
tained by component-wise integration of ∇ ⋅ (αsus + αfuf) = 0, which
when written in vector form leads to (3). Considering (3) and following
Pudasaini (2012), the relative phase velocity in the mixture, ∣uf − us∣,
can be rearranged in terms of the solid and the fluid constituent velo-
cities to get:

= +u u u u1 1
(| | | |),f s

s
f

s
f (4a)

= +u u u u1 1 (| | | |).f s
f

s
f

s
(4b)

So, the quantities on the left can be approximated by the (upper
bound) quantities on the right in (4a)-(4b). Consider a function or, a
parameter P [0, 1] which eventually combines the solid-like and
fluid-like drag contributions (discussed below) to flow resistance in
two-phase debris flows (Pudasaini, 2012). Multiply (4a) by P and (4b)
by P(1 ) and add to obtain their combination, which when squared
leads to a unique expression:

P P
P P

K= + + +u u u u| | 1 | | (1 ) 1 | | 1 ,f s
s

f
f

s
s f

2
2

(5)

where K = , and equality refers to the upper bounds in (4). Until
this point, only the fluid dynamical equations are used. Now, we ap-
proach some experimental results to model ∣us∣ and ∣uf∣.

For simplicity, consider one-dimensional (near) vertical flows. As in
Richardson and Zaki (1954), the magnitude of solid particle velocity
can be expressed as

U=u ,s f
M

T (6)

where UT is the terminal velocity of a particle falling in the fluid, and
the parameter M = M(Rep) depends on the particle Reynolds number

U=Re d /p f T f (Pitman and Le, 2005; Pudasaini, 2012). Equation (6)
is mainly applicable for dilute flows where the inter-particle distance is
substantially larger than the particle size. This limitation has been re-
moved now by incorporating the relatively dense to dense packing of
the solid grains. As we will see later, this is a great advantage of the new
enhanced generalized drag model.

Next, consider fluid flow through a relatively dense packing of solid
grains, similar to the flow of fluid through the porous medium. Typical
fluid velocity under such conditions is represented by (Pailha and
Pouliquen, 2009; Pudasaini, 2012):

U=u Re
180

.f
f

s
s p T

3

(7)

Combining (1), (5), (6) and (7), we obtain a new drag coefficient:

U P P G K
P P

=
+ + +( )

C
g

Re Re

(1 )

{ ( ) (1 ) ( )}
,DG

s f

T p p

j
1

s f (8)

where = γ(αf/αs)3Rep/180 and G = f
M Re( ) 1p are the fluid-like and

solid-like drag contributions. As often the other terms in the momentum
equations are normalized by the solid density (Pitman and Le, 2005;
Pudasaini, 2012), we have also normalized the drag in (8) by the solid
density. Furthermore, j = 1 or 2 correspond to linear (laminar-type)
or quadratic (turbulent-type) drag coefficients.

The quantity

S
P P

KP = +( ) 1 ,s
s f (9)

in the drag expression (8) is called the smoothing or the damping
function. The emergence of SP in (8) is very important as it removes
the singularity from the existing drag coefficient. This will be made
clear in Section 4.2. That SP incorporates the contribution due to the
mass flux (i.e., mass flux intensity) is new as compared to the drag in
Pudasaini (2012), where a particular value of K 0 was assumed, and
thus SP = 0 in the previous consideration. The choice K = 0 was re-
stricted to the regions where velocities are relatively small. This,
however, is not realistic in general. As it will be clear in the sequel, this
restriction produced singularity in the drag for large values of the solid
volume fraction (Pitman and Le, 2005; Pailha and Pouliquen, 2009;
Pudasaini, 2012). Furthermore, in the previous consideration, P was
just a pure numerical parameter in the domain between 0 and 1
(Pudasaini, 2012; Mergili et al., 2017, 2018a, 2018b). But, as we will
see in Section 3.3.2, here we present (construct) a functional relation
for P on αs.

So, the general functional relation of P on αs, and the emergence of
SP in (8) via (9) is crucial for the general structure of the enhanced
drag that is smooth, and systematically, and mechanically legitimately
removes the singularity. Equation (8) is called the enhanced general-
ized drag in mixture mass flows. This fully describes the drag for any
values of the solid volume fraction αs.

3.2. Different contributions in enhanced drag

There are three distinct contributions in the enhanced generalized
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drag (8), mainly in it's denominator. The first and second components
associated with and G depend largely on the material composition,
but also on the flow dynamics. However, the new contribution, called
the smoothing function SP , associated with K , depends on the mass
flux. This is the dynamical quantity. The dynamics associated with ,G
and K has been elaborated in Section 4.7. An important aspect of the
K term in (8) is that there is a strong coupling between the mass flux
and the drag. The drag is high as mass flux is low, and vice versa.
Particularly important is the flow transition to the run-out zone and
deposition. In such a scenario, the velocity, and thus the mass flux,
decreases quickly, so does K . This results in rapid increase in the drag
that enhances the mass halting. This will be made clear at Section 4.3,
and Fig. 4. Such a dynamical coupling between the mass flux and the
drag is novel, and appears to be quite natural as it is derived from the
first principle.

3.3. The closures

K and P can play crucial role in the full dynamical model cali-
bration and validation (Mergili et al., 2017; Bout et al., 2018; Qiao
et al., 2019). So, next, we need to model K and P .

3.3.1. The closure for the mass flux contribution K

The dynamics of K can be complex. There are two possibilities.
Either K can be considered as a suitably chosen parameter, or be
formally estimated (or, derived) from the physics of the flow. As K

depends on the total mass flux, this in turn depends on the flow dy-
namics, i.e., the flow velocities and volume fractions of the solid and
fluid constituents in the mixture. So, a typical value of K can be ob-
tained from (3).

There can be different options to model K . Here, we present one
possible method. By assuming a velocity drift λ (a real number), we can
establish a relationship between us and uf, uf = λus (Pokhrel et al.,
2018; Khattri and Pudasaini, 2018). However, λ is equal to unity if
there is no relative velocity between the phases, but, in general, can
deviate away from unity. Depending on whether the fluid phase is faster
or slower than the solid phase, λ would be greater than or smaller than
unity. Now, with the notation U=us s, the magnitude of us, (the upper
bound of) K can be estimated from (3):

K U+ = + = +u u u u ( ) .s s f f s s f s s f s (10)

The form of K in (10) is important and is determined by the mass
flux U+( )s f s.

In natural debris flows, the velocity can be of the order of 10 ms−1,
and the solid volume fraction is about 0.6, a typical value for a satu-
rated debris material. Thus, (10), or (3) implies that K 10.0 ms−1.
Furthermore, asUT is proportional to the flow velocity, similar ordering
as of K can also be obtained for UT .

3.3.2. The closure for P
As an important dynamical variable (or, parameter), P covers dif-

ferent spectrum of mass flows ranging from the limiting dilute to dense
flows. Different forms of P can emerge from different flow dynamics.
As discussed in Section 3.1, P combines the solid-like and fluid-like
drags in the mixture. Such combinations can be linear or non-linear in
the domain [0,1]. In Pudasaini (2012), only a simple situation was
considered by assuming a typical numerical value of P in the domain
[0, 1]. However, as αs ∈ [0,1], this dynamical variable can be utilized to
construct the possible functional relations for P , this is important. So,
we represent P as a general function of αs; typically, P = s

n, because
αsn ∈ [0,1], where n is a positive number. This consideration is novel.
As n decreases, P increases, so does the drag, because increase in P is
associated with the more dense flows (Pudasaini, 2012). The most
probable candidates for n are the values of order unity.

4. The dynamics of the enhanced generalized drag

Now, we analyze the dynamics of the new enhanced generalized
drag (8) in terms of αs. Except otherwise stated, following the
above discussion, we choose the parameter values as

K U =M Re j g( , , , , , , , ) (2700,1300,3.0,10.0,10.0,1000,1.0,9.81)s f T p , with
appropriate dimensions. These parameter choices are reasonable, and
can be explained by the underlying physics of the flow (Richardson and
Zaki, 1954; Pitman and Le, 2005; Pudasaini, 2012; Mergili et al., 2017,
2018a, 2018b).

4.1. Singularities in the existing models

First, we choose P = 0.5, representing a typical debris mixture, and
K = 0 (Pudasaini, 2012; Mergili et al., 2017, 2018b). Fig. 1 shows how
the drag can tend to unrealistically large value as the solid volume
fraction becomes large for this choice of K . And the drag coefficient
tends to infinity as the solid volume fraction tends to unity. This was the
limitation (due to singularity) of the drag model presented in Pudasaini
(2012). Such singularity also appears in other existing models. See, e.g.,
Ishii and Chawla (1979), Pitman and Le (2005), Ishii and Hibiki (2011),
for different flows including dispersive and bubbly flows, flow of fluid
in densely packed granular materials (Pailha and Pouliquen, 2009), and
the hydrodynamic models (Ganatos et al., 1978; Sangani and Acrivos,
1982a, 1982b; Durlofsky et al., 1987), which will be discussed in detail
in Section 5. This singularity has been removed now by the new model
(8) as given below.

4.2. Removal of singularity

Fig. 2 shows how the new generalized drag function (8) removes the
singularity that appeared in the existing model with K = 0 already in
the dilute regime that increased uncontrollably for solid fraction (αs)
larger than 0.3. This figure shows the direct comparison between the
very strongly singular existing drag, without the smoothing function
SP, i.e., K P= =0, 0.5, and the smooth and well bounded new

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Solid volume fraction: 

s

0

2

4

6

8

10

12

D
ra

g 
in

 m
ix

tu
re

: C
D

G

Fig. 1. The generalized drag in mixture flow for K = 0 showing the very rapid
and unphysical increase for the larger solid volume fraction.
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Fig. 2. The generalized drag in mixture flow for K 0 showing how the new
enhanced drag removes the singularity from the existing drag with K = 0.

S.P. Pudasaini Engineering Geology 265 (2020) 105429

4



enhanced generalized drag with the corresponding smoothing function
SP , i.e., K P= =10, s. The difference is huge, already in the very
dilute to dilute regime, αs < 0.4, and incomparable even in the usual
state of the debris mixture, 0.4. < αs < 0.65, and one could even not
think to compare the old drag with the new drag in the dense regime.
The new drag function reveals very smooth and nice behavior for the
entire domain, from very dilute to very dense, including the fluid and
solid limits, i.e., αs → 0, αs → 1, respectively. Importantly, there is no
singularity in the new drag in Fig. 2 for any value of αs. Section 4.7
further justifies the mechanical importance of the new generalized
drag.

Several important phenomena are observed. One of the most
striking points is that, for the reasonably selected parameter values, as
done here, the mean value of the enhanced generalized drag in Fig. 2 is
about 0.02. This value is often used in literature for mass flow simu-
lations but without any physical justification, to validate different si-
mulations (Zwinger et al., 2003; Pudasaini and Hutter, 2007). We have
provided a full analytical solution and physical basis for the dynami-
cally evolving complex drag in the mixture mass flow with well-posed
behavior. So, there is an urgent need to replace physically unbounded
drag by the new, well bounded, smooth and regular generalized drag.

4.3. Influence of K

Dynamically, the drag and the mass flux are inversely related.
Higher values ofK means higher mass flux, which in turn indicates the
lower drag. This is consistent as Fig. 3 shows such effects of K (for
K = 10 and K = 15) on drag for the particular choice of P = s. In
Section 4.5, we will discuss in detail the choice of the function, or the
parameter P and the dynamics of new generalized drag. As K is as-
sociated with the mass flux, the velocity decreases as the mass flux
decreases, and consequently the drag increases rapidly leading to the
halting of the mass flow. A small decrease in the mass flux can result in
a large to huge increase in the drag. Fig. 4 explains exactly this beha-
vior.

4.4. The smoothing function

As the smoothing function SP is of paramount importance in de-
termining the quality of drag (magnitude and form), we analyze it in
detail with P = s

n, for different n values. Fig. 5 shows that αs = 0.5 is
the pivotal point of the smoothing function. For n ≤ 1, SP strongly
smoothes or regularizes the drag on the left, and for n > 1, it does the
same on the right. But, it is clear that the rate of smoothing is com-
pletely different on the left and the right of αs = 0.5, and for larger and
smaller values of n than unity. So, the functional relation of P with αsn,
for different values of n is important. However, the different choices of
n in P = s

n, and thus in SP , results in completely different families of
drag curves. This will be analyzed in Section 4.5.2, Fig. 7.

4.5. Influence of P

4.5.1. A parameter or variable P
We present results for a numerical value of P = 0.5 and a variable

P = s, and K = 10 as shown in Fig. 6 which displays the typical dy-
namics of the new full and enhanced generalized drag function. This
indicates that the model (8) shows different behavior for larger and
smaller values of the solid volume fractions. Constant P produces a bit
more symmetrical solution whereas the variable P produces more
asymmetrical result. For both choices of P , this figure shows a very
smooth variation of the drag coefficient as the solid volume fraction
evolves from its small value to the largest value.

4.5.2. Families of drag curves with different P functions
Without loss of generality, now we choose n = 0.1,0.5,1.0,2.0,

3.0,5.0. The resulting drag dynamics are shown in Fig. 7 as a function of
the solid volume fraction, and for different n values. There are two
interesting and physically important observations. First, with the in-
creasing value of P (associated with decreasing n), the drag coefficient
increases for the larger values of the solid volume fraction (αs), which,
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however, decreases for the lower values of αs. This can be explained,
because the higher value of P is associated with the dense flows for
which the drag are higher (Pudasaini, 2012; Qiao et al., 2019). The
larger (n > 1) and smaller (n < 1) values of n generate two funda-
mentally different families of positively and negatively skewed drag
curves as indicated by the dashed and solid lines, respectively. Fur-
thermore, with the changing value of P , the quality of the drag curves
change as the curves shift to the left or right. For n > 1.0 as n in-
creases, the peaks of CDG increase but shift to the left (to lower value of
αs). However, for n < 1.0 as n decreases, the peaks of CDG increase, and
shift to the right (to higher αs values). More importantly, for smaller
values of P closer to αs (i.e., n = 1.0), the drag curve tends to become
more symmetric, however, for large values of P (i.e., n = 0.1), it be-
comes strongly asymmetrical with strong variation of the drag value.
So, (i) better knowledge of P , and (ii) evolving solid fraction (Mergili
et al., 2017, 2018a, 2018b; Bout et al., 2018; Qiao et al., 2019) is very
important for the proper understanding of the drag, and thus, the flow
dynamics as a whole.

It is interesting to note that, although αs = 0.5 was the pivotal point
for the smoothing function SP (Fig. 5), αs ≈ 0.6 appears to be the
pivotal point for the drag functions in Fig. 7. Such a shift in the pivotal
point is determined by the numerator and denominator of CGD in (8),
including the three components of the denominator, associated with the

, G , and K terms.

4.6. Influence of the material parameters

4.6.1. The material densities
The buoyancy reduced normal load of the particles is linearly de-

pendent on the density ratio parameter γ, so does the numerator of CDG
in (8). However, CDG varies strongly nonlinearly with γ, because , that
appears in the denominator of CDG, is also a function of γ. Fig. 8 shows
that CDG varies strongly and non-linearly, from one CDG curve to an-
other, mainly for larger values of γ, and the overall magnitude of CGD
decreases with increasing γ values.

4.6.2. Effect of the parameterUT
Even more interesting is the influence of the particle terminal velocity

UT on the enhanced generalized drag CDG. This has been depicted in Fig. 9.
Very big and very small terminal velocities result in completely different
drag forces. As UT can play the role of a representative velocity, low UT
values lead to higher drags, and the high UT values result in low drags.
Measured UT value is as high as 380 ms−1, in skydiving (https://www.
bbc.com/news/science-environment-19943590). So, the new drag model
may also be used in such special flow dynamical simulations. The results
in Fig. 9 is consistent with the results in Section 4.3 (Fig. 4), in determining
the magnitude of CDG. For very small UT , the drag is distributed almost
normally about the mean value of the solid volume fraction (αs = 0.5).
However, for very largeUT , the drag curve skewed strongly negatively. So,
the terminal velocity of the particles in the mixture plays important role in
determining the form and magnitude of the drag curve.

4.7. Mechanical importance and dominance of ,G and K terms

The above results imply that it is important to compare the dyna-
mical behavior and dominance of the three different terms in the de-
nominator of the generalized drag (8). Fig. 10 reveals that the drag
corresponding to each of the three terms associated with , G and K

(switching the other two terms off) are fundamentally different. On the
one hand, the fluid-type drag ( ) is the worst one and can not be taken
alone, while the solid-type drag (G ) is also not acceptable and is un-
physical as it increases exponentially already in the dilute regime and
cannot be applied both in the intermediate particle concentration and
the dense regime, which, however, represents the most of the debris
and geophysical mass flows. On the other hand, the drag associated
with the mass flux (K ) is smooth, behaves very well, and is well
bounded for the entire domain of the solid fraction distribution. How-
ever, it does not include the material and other flow properties as
discussed above. The complete drag structure (denoted by ‘All’ in
Fig. 10) in (8), that includes all three components, is thus necessary to
legitimately describe the complex drag associated with the mixture
mass flows covering the whole spectrum of the particle concentration.
This highlights the mechanical importance of the new enhanced drag in
properly modelling the dynamics of mixture mass flows such as
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landslides and debris flows.

4.8. Non-linear drag

As for the linear drag, families of curves can be obtained for the non-
linear or the quadratic drag associated with the turbulence-type flows.
This is described by j = 2 in (8). However, we must choose the para-
meter values appropriately. For this, we can select the parameters as:

K U =M Re( , , , , , ) (2700,1100,2.5,4.0,3.0,3500)s f T p . These values are
compatible with the turbulence flows (Richardson and Zaki, 1954;
Pitman and Le, 2005; Pudasaini, 2012). Qualitatively similar trend as in
linear drag (Fig. 7) are observed (not shown). However, the drag
magnitudes are much smaller, particularly for n ≥ 1. This is physically
justifiable, because drag varies inversely with the relevant Reynolds
number (Brennan, 2001; Brennen, 2005; Ishii and Hibiki, 2011).

Furthermore, the pivotal point shifts a bit to the right for the non-
linear drag curves as compared to the linear drag curves. However, the
locus of the maxima of the drag curve is fundamentally different than
the same for the linear drag. Now, for increasing αs, the curve drops
slowly on the left of the pivotal point, but, afterwards, it rises up ex-
ponentially. So, such a locus characterizes the dynamical behavior of
the drag curves as a function of P = s

n.

5. Comparison with some existing drag models and methods

Fig. 10 compares the partial fluid-type drag model (Pailha and
Pouliquen, 2009), solid-type drag model (Pitman and Le, 2005) and the
full new model. Similarly, Figs. 1 and 2 compare the previous drag
(Pudasaini, 2012) in mixture mass flow indicating the very rapid and
unphysical increase for the larger solid volume fraction, and the well
behaving new drag in mixture flow. These figures clearly reveal how
the existing drag models applied in simulating mixture mass flows
contain unphysical singularities for dilute to dense, and very dense
mixture flows. The new model, however, removes such singularity.

Here, we further discuss some other pioneering analytical and nu-
merical hydrodynamic drag models presented for the mixture flows.
Sangani and Acrivos (1982a) developed numerical drag models as a
function of the volume fraction of the cylinders for the slow flow past a
square and a hexagonal array of cylinders. Two different models were
developed, for dilute and dense (very concentrated) distributions of the
cylinder. Their numerical models are shown to be in excellent agree-
ment with the corresponding asymptotic expressions for negligible as
well as maximum allowable volume fraction of cylinders.

The analytical models for the drag force (coefficients) developed by
Sangani and Acrivos (1982a) for flow past square arrays of cylinders,
for dilute and dense flows, respectively, written in non-dimensional
form, are,

=
+ + +

F
µ u O

4
ln( ) 0.738 0.887 2.038 ( )

,

0.4,

dilute

f f c c c c c

c

1/2 2 3 4

(11)

and

F
µ u

9 /2 2 1 , 1.0,dense

f f

c

c
c c

1/2 5/2

max
max

(12)

where Fdilute and Fdense are the applied drag forces in dilute and dense
arrangements of cylinders, αc is the volume fraction of cylinders, and
αcmax is the corresponding volume fraction when the cylinders are
touching each other.

Fig. 11 depicts the comparison between the drag models presented
in Sangani and Acrivos (1982a) and the new model (8) with parameters

U= = =n Re2.0, 4.0, 300T p . Due to the lognormal nature of the drag
functions in Sangani and Acrivos (1982a), direct comparison between
the models therein and the new model presented here is not that easy.

So, for the purpose of comparison, the functions are appropriately
scaled and plotted in lognormal scale (panel A), or normalized with
their respective maximum values (panel B) in Fig. 11 for both drag
functions in Sangani and Acrivos (1982a), and our new drag model.
However, the numerical and analytical models in Sangani and Acrivos
(1982a, 1982b) show fast (or, exponential) increase of the drag forces
for αc ≥ 0.2. This indicates the singular behavior in their drag models.
The models (11) and (12) present different approximate analytical so-
lutions for dilute and dense distributions of cylinders with no analytical
connection between them. Both panels show singular behavior of the
Sangani and Acrivos (1982a) models already from relatively dilute
mixture (i.e., for αc ≥ 0.2), but our model is well controlled, smooth,
and behaves nicely for any values of the solid volume fraction. There is
a substantial jump between those analytical solutions in Sangani and
Acrivos (1982a) around αc = 0.2. The numerical solution has also been
presented by Sangani and Acrivos (1982a) for the entire dilute domain
(αc ≤ 0.4). However, both the analytical and numerical solutions
therein tend to show exponential increase of the drag force as the flow
change from very dilute to dilute regime. We note that, analogous
analytical and numerical models are presented for flow past hexagonal
arrays of cylinders (Sangani and Acrivos, 1982a), and again show si-
milar singular behavior as in square arrays of cylinders.

However, our approach is different, fully analytical, and covers the
whole range of particle (solid) volume fraction with a single smooth
function. The panel A in Fig. 11 shows that our new drag function re-
presents both the dilute and dense flows, passes through the very dilute
and dilute functions in Sangani and Acrivos (1982a), and at the same
time, covers the entire spectrum of the solid volume fraction from fluid
to dry limits in a well controlled manner. Importantly, our new model
can be applied to rapid as well as slow flows of mixture materials, and
for any Reynolds number. Furthermore, the new drag model also in-
cludes buoyancy effects, and the drag vanishes for the neutrally
buoyant flows. This is a fundamental aspect of the mixture mass flows
(Pitman and Le, 2005; Pudasaini, 2012). Our analytical solution is
unified, a single solution covers the entire range of particle con-
centrations, from the fluid limit (αs → 0: viscous flood) to dry limit
(αs → 1: landslide), and for any dilute to dense distribution of dispersed
particles (debris flow). Moreover, drag vanishes at these limits as nat-
ural characteristics.

Furthermore, Durlofsky et al. (1987) presented numerical drag
model (coefficient) for the sedimenting horizontal chains of uniformly-
spaced identical spheres. However, essentially the drag is increasing
very fast (exponential-like) as a function of number of spheres, so,
number of dispersed particles, akin to the particle concentration in
particle-fluid mixture. Yet, their drag coefficients can be obtained only
after large computation of multi-body system with given applied force.
Durlofsky et al. (1987) presented a discrete approach. We have devel-
oped a fundamentally novel continuum mechanics based fully analy-
tical model for drag in mixture mass flow. So, our model is simple and
much cheaper than the discrete models.

6. Application in debris flow simulation

To access the influence of the new full generalized drag (8) over the
previous one (with K = 0), here, we present some basic simulation
results on benchmark debris flows. For this, we consider the general
two-phase dynamical mass flow model of Pudasaini (2012). Further
application of the new drag model can be found in Pudasaini and
Mergili (2019).

6.1. Simulation set-up

For the simulations, we consider a typical set up of channel geo-
metry and debris mass. The slope is inclined at an angle of 50°. The
spatial domain for simulation ranges from x = − 50 m to x = 400 m in
the downstream direction, and from y = − 200 m to y = 200 m in the
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cross wise direction. The initial debris mass is defined by a triangular
wedge 0 m ≤x ≤ 50 m, −35 m ≤y≤ 35 m in Fig. 12 (top panels, t = 0
s) that contains a debris mixture of solid particles (65%) and viscous
fluid (35%).

6.2. Simulation parameters

The Pudasaini (2012) model contains several physical parameters.
The parameters chosen for the simulation (with proper dimensions) are:
U = 1.0T , Rep = 1.0; P K= =0.5, 0 (for the previous model), or
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Fig. 11. Comparison between the drag model in Sangani and Acrivos (1982a) for square array of cylinders, and the new analytical model constructed here. A:
lognormal; B: normalized plot with respect to the maximum of each functions in Sangani and Acrivos (1982a) and the new model.

Fig. 12. Two-phase debris flow dynamics down an inclined surface (50°) indicating a developed flow. Initially (t = 0 s) the debris mixture consists of 65% solid, 35%
fluid. A: with old model. B: with the new enhanced generalized drag (8). Color bars indicate flow depth in m. Arrows indicate the flow direction.
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P K= =, 10s (for the new model) as discussed earlier; j = 1, virtual
massC = 1.0, quasi-Reynolds number NR = 30,000, mobility Reynolds
number NRA

= 1,000, parameter indicating vertical distribution of the
particle concentration ξ = 3, vertical shearing of fluid velocity χ = 5,
ρs = 2700, ρf = 1100, internal friction angle ϕ = 45°, and basal friction
angle δ = 40°. These choices of parameters are made on the basis of the
physics of two-phase mass flows (Pudasaini, 2012; Pudasaini, 2019;
Pudasaini and Krautblatter, 2014; Kattel et al., 2016, 2018, and Mergili
et al., 2017, 2018a, 2018b).

6.3. Numerical method

In order to capture the complicated phenomena of complex mixture
mass flow, we employ high-resolution Total Variation Diminishing
(TVD), Non-Oscillatory Central (NOC) schemes (Nessyahu and Tadmor,
1990; Jiang and Tadmor, 1998; Tai et al., 2002) to numerically in-
tegrate the Pudasaini (2012) model equations, with the previous and
the new drag models. Such numerical schemes are efficient and have
been extensively used in simple to sophisticated mass flow simulations
(Pudasaini and Hutter, 2007; Mergili et al., 2017, 2018a, 2018b; Kattel
et al., 2018; Qiao et al., 2019).

6.4. Simulation results

Panels A in Fig. 12 are the simulations with the previous model
(with P K= =0.5, 0), and panels B are the simulations with the new
model (with P K= =, 10s ) given by (8), for time t = 0,7,8 s, re-
spectively. This represents a type of fully developed flow. As the drag
with K = 0 is much higher in the local regions with substantial solid
fraction, the major and the central portion of the debris body could not
be fluidized or lubricated (due to unphysical access drag), and thus
could not properly advect along the slope, even after 8 s. This resulted
in the unphysically diffused front while the central region is resisted
strongly due to the excess drag. However, with the new model (K 0)
the drag is appropriately applied over the entire body (see, e.g., Fig. 2)
that lets the debris mass to be properly fluidized allowing the sub-
stantial down-slope propagation of the major portion of the debris to
the frontal part. This led to the formation of the frontal head as often
observed in mixture debris flows (Kattel et al., 2016, 2018). A clear
frontal head could not be developed in the simulation with the previous
drag model. This resulted in the much different geometrical forms of
the simulated debris bodies obtained with the previous and the new
drag models.

The diffusive front (for K = 0) is due to the very high initial hy-
draulic pressure at the front where the drag is comparatively low at the
early stage of collapse and the incipient motion. However, in the main
body, the hydraulic pressure is relatively low, so the drag is dominant
there. This unphysically prevented the down-slope motion of the main
body. But, for K 0, the drag is mild, also at the central part of the
debris body, allowing the main body to legitimately accelerate down-
slope due to gravity.

Another interesting point is the local distribution of the flow depth,
which is much higher around the central portion of the debris body
with the previous drag model (h > 3.6 m, and h > 3 m at t = 7 s and
t = 8, respectively), while the flow depth is much less (h ≈ 2.7 m, and
h ≈ 2.5 m at t = 7 s and t = 8, respectively), but more naturally
distributed, with the new drag model. Similarly, the propagation speed
of the major frontal head is quite slower with the previous model
(K = 0) at about x = 235 m, and x = 280 m, whereas this speed is
much higher with the new drag model (K = 10) at x ≈ 275 m and
x ≈ 325 m at t = 7 s and t = 8, respectively. The difference between
the surges with the old and new drag models is already about 40 m at
t = 7 s, and 45 m at t = 8 s, respectively. These are big numbers even
for the considered simulation configuration. Hence, the new enhanced
generalized drag legitimately fluidizes (or lubricates) the debris mass
leading to higher mobility. This is important to properly simulate the

landslide motion and morphodynamics.
Furthermore, as the previous drag unphysically applies the higher

resistance to the downslope motion, the debris mass in panel A is forced
to expand more in the cross-slope direction, which is considerably less
in panels B associated with the proper drag model. The maximum lat-
eral extent in panels A at t = 7 s and t = 8 s are 200 m and 210 m at
x = 190 m and x = 240 m, respectively. However, in panels B, the
maximum lateral extent at t = 7 s and t = 8 s are 190 m and 195 m at
x = 200 m and x = 250 m, respectively.

All these discrepancies with the previous drag model are due to the
unnecessarily higher drag for considerable to higher solid volume
fraction, which has now been removed by the new enhanced and full
drag model. This sheds light on the basic mechanics and flow dynamics
of the new drag model.

Further advantage of the new model is that, because of the singu-
larity induced instability, the drag with K = 0 requires much smaller
CFL number than the CFL number for the simulation with K 0. This
results in efficient flow simulation with the new drag. So, such a new
smooth drag function is very advantageous in real applications with
complex multi-phase mass flows and in combination with open source
computational tool, e.g., the r.avaflow (Mergili et al., 2017; Qiao et al.,
2019) that required to impose conditions on the old drag when it be-
comes unphysically large. Such conditions can now be lifted. This
highlights the immediate application potential of the new drag model in
real field scale landslide and debris flow events (Bout et al., 2018;
Mergili et al., 2018a, 2018b; Zheng et al., 2018; Wang et al., 2019a;
Wang et al., 2019b).

7. Discussions

We have compared the existing partial fluid-type (Pailha and
Pouliquen, 2009), solid-type (Pitman and Le, 2005) and the full, new
drag model in mixture mass flows. This revealed that the new model
removes singularities in existing models. Furthermore, we compared
our new model with different other hydrodynamic drag models. The
numerical and analytical models in Sangani and Acrivos (1982a,
1982b) show fast increase of the drag forces for relatively higher vo-
lume fraction of the dispersive phase, and indicates the singular beha-
vior. However, our approach is fully analytical, unified, behaves nicely,
and a single solution covers the entire range of particle concentrations.
The new model can be applied to fast and slow flows. We also compared
our drag model with discrete numerical drag model of Durlofsky et al.
(1987) which essentially shows fast increasing behavior as number of
dispersed particle increases. Our efficient continuum mechanics based
analytical model is valid for the whole range of particle concentration.
Moreover, the mixture flow simulation sheds light on the basic me-
chanics and flow dynamics of the smooth, but strongly non-linear new
enhanced generalized drag model. This offers a great first-ever oppor-
tunity to be applied to a wide range of mixture flow problems, including
landslides and debris flows (Bout et al., 2018; Mergili et al., 2018b;
Zheng et al., 2018; Qiao et al., 2019; Wang et al., 2019a; Wang et al.,
2019b). Due to these important aspects, we now discuss the results on
the new enhanced generalized drag in mixture mass flows mainly based
on Fig. 7.

I. For all the choices of the exponent n in P = s
n; there is a common

drag value of about CDG = 0.047 at about αs = 0.6, akin to a sa-
turation state. For n = 1.0, the mean value of CDG = 0.02, which is
the most often used empirical drag value in literature (Zwinger
et al., 2003; Pudasaini and Hutter, 2007), but here obtained with
the involvements of the underlying physical parameters and me-
chanical processes in mixture flows. As n deviates away from unity,
two asymmetric families of drag curves emerge. However, the drags
for n ≤ 1.0 are probably the most suitable ones. In the new deri-
vation (8), the function P is dynamically fixed and is no more a free
parameter, so is UT . This substantially helps in simulation by
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reducing the parameter uncertainties (Mergili et al., 2017, 2018a).
II. There are some special values of the solid volume fractions for

which the drag takes maximum values and then, decrease on either
side of that particular value of αs. This is a strikingly new under-
standing and completely counter intuitive. But, this special beha-
vior can be explained from a physical point of view: For this, we
consider the family of drag curves for n ≤ 1. As αs increases from its
lower values, CDG also increases, first gently, then rapidly, but until
a certain value that lies in (0.65, 0.75), a typical value of saturation.
Then, it decreases rapidly as αs tends to approach its right limit.
Why is this meaningful? This is so, because as the debris material
tends to the state of close packing, the drag behaves completely
differently. To the value just lower than the dense packing, the drag
quickly increases if more and more solid particles are added in to
the system that increases the drag. Still, the fluid can pass through
the inter-connected pores, so both the solid- and fluid-like drags are
effective. But, if further grains are added in to the system then, the
material tends to behave more like solid and the fluid effects are
rapidly diminishing, because the fluid can not move relatively
freely as it could do before. Furthermore, as the material is densely
packed, grains are increasingly supported by the neighboring
grains, and thus, cannot freely move in the fluid as before. The solid
drag virtually tends to vanish as αs tends to unity. So, effectively,
both the solid and the fluid drags are decreasing after a certain peak
value of the solid volume fraction in the mixture. Such decreasing
drag with increasing αs are also observed for churn-turbulent, and/
or slug flows (Ishii and Chawla, 1979; Ishii and Hibiki, 2011) in-
dicating that (8) with large αs values may behave as churn or slug
flows. For the churn-turbulent-flow regime, in which the radius of
the fluid particle is further increased, and for the slug-flow regime,
the volume of a bubble becomes very large, or equivalently, we can
consider assembly of densely packed particles, whose shape can
significantly deform to fit the channel geometry. Thus, the dia-
meters of the bubbles, or the granular assembly (“particles”) may
become nearly that of the channel width with a thin liquid film
separating such particles from the wall. As shown by Ishii and
Chawla (1979), in these situations, the drag coefficient decreases
with the increase in the volumetric concentration, and finally, the
drag coefficient vanishes as the volumetric concentration of solid
tends to unity.

III. The dynamics of CDG as observed in Fig. 7 might be utilized to
model the slug flow scenario. The curve connecting the maxima of
the drag can be selected for this purpose. This curve has two
maxima and a minimum in between. High drag means high re-
sistance to flow, and vice versa. The slug flow could be developed in
local areas where the drag is high, whereas the smooth and more
dispersed flows can be developed in between in the local region of
low drag. Thus, on the one hand, locally small or large n values, and
small K and γ, all enhance the drag, and thus, possibly generate a
favorable condition for the slug formation, a bit away on either side
of the dense packing of the dispersed phase. On the other hand,
intermediate n values and larger K and γ reduce the drag sub-
stantially close to the dense packing of the dispersive phase. So, by
randomly, but appropriately, switching the mass flux intensity as-
sociated with n and K , we might be able to generate a slug flow.

IV. The most important aspect of the new drag function is that, for any
value of αs, CDG is sufficiently smooth and behaves nicely in contrast
to the previous models where they tend to show infinitely large
value of CDG for sufficiently large value of the solid volume fraction
(Ganatos et al., 1978; Ishii and Chawla, 1979; Sangani and Acrivos,
1982a, 1982b; Durlofsky et al., 1987; Ni and Beckermann, 1991;
Pitman and Le, 2005; Pailha and Pouliquen, 2009; Ishii and Hibiki,
2011; Pudasaini, 2012). So, the new model removes the singularity,
or nonphysically rapidly increasing value of the drag with the solid
volume fraction.

V. The mixture flow dynamics is influenced by the solid (or, the fluid)

fraction if it is sufficiently bounded away from zero. Otherwise, the
dynamics is not substantially altered by the solid (or, the fluid)
phase (Pudasaini, 2012). So, in practice, very small and very large
values of the solid fractions can be technically ignored. As sug-
gested by (1) or (8), generally in the limit as αs or αf tends to zero,
CDG should vanish. This is a natural requirement because, in these
limits, the material behaves as if it was a single-phase material
(Pudasaini and Hutter, 2007). So, virtually no drag contribution
should appear as the origin of the drag is the non-zero relative
velocity between the solid and the fluid phases.

VI. The drag force can be applied for both the unstructured and
structured flows. For relatively high solid contents, but un-
structured flows with negligible cohesive bonds between grains, the
drag coefficient might be more accurate. However, the drag force
decreases with the structured flow. This can be explained with the
new drag force, with reference to Fig. 7. For example, consider
n = 1. Structured matrix can be assumed with substantially higher
solid fraction. As αs becomes larger than a typical dense packing,
say αs > 0.65, the drag decreases rapidly and finally becomes zero
as αs tends to the solid limit (αs → 1), the fully structured state of the
material.

However, the performance and the suitability of the new drag model
should be checked with laboratory data and field events. Further
parameter sensitivity analysis should be performed for the parameter M
appearing in solid-type drag contribution, and j which is associated
with the laminar- and turbulent-type drag. The drift factor λ appearing
in the mass flux contribution, K , should also be calibrated that models
whether the solid or the fluid phase moves faster. This signifies whether
the frontal surge is solid- or fluid-dominated, depending on λ < 1, or
λ > 1, or the flow behaves as if it was a homogeneous mixture (λ = 1)
of solid particles and viscous fluid.

8. Summary

Based on the first principle, we have analytically derived an en-
hanced generalized drag in mixture mass flows that fully describes the
drag for any values of the solid volume fraction. The new drag model
incorporates the contribution due to the mass flux that was neglected in
previous formulations. We have constructed functional relations for the
new contributions and parameters appearing in the model connecting
them with the solid volume fraction, and the mass flux. The previous
formulation was restricted to the regions where velocities are relatively
small. That produced singularity in the drag for large values of the solid
volume fraction. In existing dispersive mixture mass flow and hydro-
dynamic drag models, drag can tend to unrealistically large value and
tend to infinity as the solid volume fraction becomes higher, or ap-
proaches unity. Our new model removes such singularity inherited by
existing models.

There are several important implications of the enhanced general-
ized drag combined with the functional values and parameters de-
pending on dense to dilute distribution of particles in the mixture that
strongly determine the shape and the magnitude of the drag curve,
characterizing the new extended model. One of the most striking points
is that, for the reasonably selected parameter values, the mean value of
the enhanced generalized drag appeared to be the often used value in
literature but, without any physical justification. We have provided a
full analytical solution and physical basis for the dynamically evolving
complex drag in the mixture flow with well-posed behavior. The further
physically important point is: For some special value of the solid vo-
lume fraction, the drag takes its maximum. This is a strikingly new
understanding. The drag increases for the larger values of the solid
volume fraction, which, however, decreases for the lower values of the
solid volume fraction. However, the drag must decrease after a certain
value of the solid fraction. This has been explained. The most important
aspect of the new drag function is that, for any value of the solid
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fraction, the drag is sufficiently smooth. Depending on the nature of the
mixture, from dilute to dense flows, two fundamentally different fa-
milies of generally asymmetrical drag curves emerge. We have identi-
fied the physically most suitable drag curves. A benchmark simulation
of debris flow clearly indicates the application potential of the new drag
model in real field events. We have shown that better knowledge of
evolving mixture, from dilute to dense, and thus the evolving solid
fraction is very important for the proper understanding of the drag, and
thus, the flow dynamics as a whole. So, the new analytical, smooth and
strongly non-linear enhanced drag offers a great opportunity for the full
dynamical simulation of a wide range of mixture mass flows including,
landslides and debris flows.
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