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Keywords: Modeling mass flows is classically based on the hydrostatic, depth-averaged balance equations. However, if
Multi-phase mass flow model/avalanches and the momentum transfers scale similarly in the slope parallel and the flow depth directions, then the gravity
debris flows and the acceleration can have the same order of magnitude effects. This urges for a non-hydrostatic model
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formulation. Here, I extend existing single-phase Boussinesq-type gravity wave models by developing a new
non-hydrostatic model for multi-phase mass flows consisting of the solid and fine-solid particles, and viscous
fluid (Pudasaini and Mergili, 2019 [1]). The new model includes enhanced gravity and dispersion effects
taking into account the interfacial momentum transfers due to the multi-phase nature of the mass flow. I
outline the fundamentally new contributions in the non-hydrostatic Boussinesq-type multi-phase gravity waves
emerging from the phase-interactions including buoyancy, drag, virtual mass and Newtonian as well as non-
Newtonian viscous effects. So, this contribution presents a more general, well-structured framework of the
multi-phase flows with enhanced gravity and dispersion effects, setting a foundation for a comprehensive
simulation of such flows. I discuss some particular situations where the non-hydrostatic and dispersive effects
are more pronounced for multi-phase mass flows. Even the reduced models demonstrate the importance of
non-hydrostatic contributions for both the solid and fine-solid particles, and the viscous fluid. Analytical
solutions are presented for some simple situations demonstrating how the new dispersive model can be reduced
to non-dispersive motions, yet largely generalizing the existing non-dispersive models. I postulate a novel,
spatially varying dissipative force, called the prime-force, which physically controls the dynamics, run-out and
the deposition of the mass flow in a precise way. The practitioners and engineers may find this force very
useful in relevant technical applications. This illuminates the need of formally including the prime-force in the
momentum balance equation. A simple dispersion equation is derived. I highlight the essence of dispersion
on the mass flow dynamics. Dispersion consistently produces a wavy velocity field about the reference state
without dispersion. Emergence of such a dispersive wave is the first of this kind for the avalanching debris
mass. It is revealed that the dispersion intensity increases energetically as the solid volume fraction or the
friction decreases.

1. Introduction Classically, modeling geophysical flows is usually based on the
hydrostatic, depth-averaged mass and momentum balance equations.

Natural hazards associated with geophysical mass movements con- Hydrostatic flow models are based on the assumption that the slope
sist of a mixture of granular materials of different sizes of particles parallel length scale is much larger than the length scale in the flow
and the fluid with their respective physical properties. There have been depth direction. However, if the similar length scalings are required in
rapid advancements in modeling shallow granular material [2-6] and the slope parallel and the flow depth directions, then the gravity and

particle fluid mixture [1,7-9] mass flow modeling. These models are
primarily based on the hydrostatic pressure assumptions. However, due
to the centrifugal acceleration, the mass flows in curved channels also
include some non-hydrostatic contributions to hydraulic pressure gra-
dients and the Coulomb friction forces because of the enhanced normal
load [10-12]. Furthermore, Pailha and Pouliquen [13], Pudasaini [9]
showed that the pressure in mixture mass flows can be non-hydrostatic

the vertical acceleration can have the same order of magnitude effects
[14,15]. This may call for the use of the full (without reducing to the
hydrostatic condition) momentum equation also in the slope normal
direction as in the slope parallel directions. Denlinger and Iverson [14]
mentioned that the vertical accelerations in granular mass flows can
be of the same order of magnitude as the gravity acceleration. In this

due to the Newtonian and non-Newtonian viscous contributions, the situation, the vertical acceleration can be as significant as the acceler-
particle concentration distributions, and the relative velocity between ation in the slope parallel direction. This is particularly so for steep,
particle and fluid. irregular and curved slopes where there is a substantial acceleration of
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the material in the flow depth direction. So, they suggested for the non-
hydrostatic modeling of granular flows. This requires enhancements of
the normal stress (in the slope normal or vertical direction) that results
in the enhancements of the acceleration, friction and fluxes in the
momentum balance equations [15,16]. Since the Coriolis acceleration
is usually neglected in geophysical mass flows (such as landslide and
avalanches), two-types of accelerations can be induced affecting the
normal stress distributions of the free surface flows [15]: First, the
acceleration due to the real forces acting at the bed-normal direction.
Second, the centripetal acceleration that arises due to the curved flow
path [10,12]. The first is the main contributor of the Boussinesq-
type models, while both combined result in the more comprehensive
non-hydrostatic flows.

Following the work of Boussinesq [17,18], the free surface wa-
ter flow simulations are generally based on non-hydrostatic depth-
averaged models. Fundamental further contributions in including
Boussinesq-type non-hydrostatic and dispersive effects in water waves
are also due to Serre [19], Peregrine [20] and Green and Naghdi
[21]. The recent advancements and applications of the dispersive wave
characteristics of the Boussinesq system with sophisticated numerical
schemes for real flow simulations include the works by Nwogu [22],
Wei and Kirby [23], Madsen and Schiffer [24], Kennedy et al. [25],
Stansby [26], Chen et al. [27], Erduran et al. [28], and Kim and Lynett
[29]. For detailed review on it, I refer to Castro-Orgaz et al. [15].
However, the effect of nonzero vertical acceleration on depth-averaged
momentum fluxes and stress states were first included by Denlinger and
Iverson [14] while modeling shallow granular flows across irregular
terrains. This was later extended by Castro-Orgaz et al. [15] resulting
in the novel Boussinesg-type theory for granular flows. Castro-Orgaz
et al. [15] rigorously developed a non-hydrostatic depth-averaged
granular flow model. Considering the vertical motion of particles, they
explicitly determined the vertical velocity, vertical acceleration, and
vertical normal stresses from the mass and momentum conservation
equations. They have shown that granular mass flow can be described
by fully non-linear, Boussinesq-type gravity waves, generalizing the
basic Boussinesq-type water wave theory used in civil and coastal
engineering to granular mass flows. Subsequently, Yuan et al. [16]
advanced further by presenting a more complete non-hydrostatic shal-
low granular flow model. They also cast their model in to a usual
Boussinesg-type water wave equations.

In developing the non-hydrostatic Boussinesq-type gravity wave
models for granular flows, both Castro-Orgaz et al. [15] and Yuan
et al. [16] considered the vertical momentum equation, assuming the
shallowness of the flow depth and the constant velocity profiles of
the horizontal velocity components. Along with these assumptions,
there are three key aspects in their model development: Obtaining
the vertical normal stress component from the vertical momentum
equation, an expression for the vertical velocity component in terms of
the horizontal mass flux (divergence), and the definition of the depth
integration of the vertical velocity component from a generic elevation
to the free surface. Finally, the depth averaged mass and momentum
equations, together with these three considerations lead to a non-
hydrostatic Boussinesq-type gravity wave models for granular flows.
However, all these formulations are primarily based on the global
horizontal-vertical Cartesian coordinate for a single-phase granular
flows.

One- and two-phase models cannot appropriately represent many
important aspects of very complex mass flows in terms of material com-
position and interactions among the involved phases. The rheological
properties and flow dynamics are governed by coarse and fine solids,
and viscous fluid, i.e., typically three phases [7,30-33]. Consequently,
the most complex model family for geophysical mass flows should aim
at describing the flow as (typically) a three-phase mixture, as often
observed in the field and experiments [32,34-37]. In general terms,
the mechanically distinct components in the mixture mass flow can
be divided into three constituents: The fluid phase is a mixture of
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water and very fine particles (clay, silt, colloids), the fine-solid phase
consists of sand and particles larger than clay and silt, and the solid
phase represents the coarse material. These materials can be described
as viscoplastic, Coulomb-viscoplastic, and Mohr—Coulomb continuum.
With this, Pudasaini and Mergili [1] proposed a novel multi-phase,
multi-mechanical mass flow model, by extending the two-phase viscous
fluid and Coulomb solid model [9] to additionally combine it with the
fine-solid material. The Pudasaini and Mergili [1] model can accurately
simulate complex cascading multi-phase natural events [38-40].

Here, I extend and utilize the above mentioned ideas to the multi-
phase mass flow model [1] to generate a new non-hydrostatic
Boussinesq-type gravity wave model for multi-phase mass flows in
a locally inclined Cartesian coordinate system [8,9]. The new non-
hydrostatic multi-phase mass flow model includes enhanced gravity
and dispersion effects as in the single-phase models by Denlinger and
Iverson [14], Castro-Orgaz et al. [15] and Yuan et al. [16]. But, our
new model further includes interfacial momentum transfers in the
non-hydrostatic Boussinesq-type model formulation representing the
complex multi-phase nature of the mass flow. I delineate the fundamen-
tally new contributions in the Boussinesq-type gravity waves in mass
flows emerging from the phase-interactions. This includes buoyancy,
drag, virtual mass and Newtonian plus non-Newtonian viscous effects. I
outline the first-ever application potential of the dispersive multi-phase
mass flows. As in the effective gravity, the dispersive terms are strongly
coupled, e.g., due to the interfacial drag and virtual mass contributions.
There are direct and strong couplings between the solid, fine-solid and
the fluid components among these dispersion relations. Interfacial drags
bring completely new mechanisms in the non-hydrostatic, dispersion
relations. I discuss some particular situations where the non-hydrostatic
dispersive effects are more pronounced in multi-phase particle-fluid
mixture mass flows than in single-phase flows. So, this contribution
sets a foundation for a more comprehensive and general frame for the
simulation of dispersive, multi-phase mass flows. Simplified models
are presented that might be helpful in solving the equations with
reduced complexity. The reduced models already appeared to be the
important generalizations and extensions of some mass flow models
available in the literature. I formally postulate a new, spatially varying
dissipative force, called the prime-force, which can physically precisely
control the mass flow dynamics, run-out and deposition. I present
a simple dispersion model and its solution. Dispersion produces a
wavy velocity field about the reference state without dispersion. The
dispersion increases greatly as the solid volume fraction or the basal
friction decreases. These are new understandings for the motion of a
dispersive landslide.

2. Construction of the model
2.1. Non-hydrostatic contributions

Following Pudasaini and Mergili [1] and Pudasaini and Fischer
[41], first, let us define the variables and parameters. Let the solid, fine-
solid and fluid phases be denoted by the suffices s, f's, f, respectively.
The fluid phase is governed by its true density p,, viscosity #;, and
isotropic stress distribution; the fine-solid and solid phases are char-
acterized by their true densities p/,, p,; internal friction angles ¢,
¢,; basal friction angles é,,, 4,; and anisotropic stress distribution, K
(lateral earth pressure coefficient); and the viscosity of the fine-solid
ny,. Furthermore, v/ = p;/p,, v* = PrslPss rfs = ps/pys are the
fluid to solid, fine-solid to solid and fluid to fine-solid density ratios,
v; and v¢_ are the effective kinematic viscosities for the fluid and fine-
solid, u, = tand, and u;, = tanéd,, are the friction coefficients for
the solid and fine-solid. Let u, = (u,v5,w,), Uy = (up, v w5),
u, = (us,v;,wy), and a;, az, a, denote the velocities with their
components along the flow directions (x, y, z), and the volume fractions
for the solid, fine-solid, and fluid constituents. Similarly, p,, and p, are
the pressures, Cp; and C,,, constitute the interfacial force densities,
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namely, the drags and the virtual mass forces, and Cj,,, are the viscous
drag coefficients. The superscript-pair represents the considered phases,
e.g., C;é means the drag force exerted by fluid on solid, C are the
virtual mass coefficients, T,, are the components of the Cauchy stress
tensor, j = lor2 correspond to linear or quadratic drag coefficients,
g*,g”, g% are the components of gravitational acceleration, basal- and
the free-surface of the flow are denoted by b = b(7, x, y) and s = s(z, x, y),
and h = s — b is the flow depth.

2.1.1. Derivation of normal stress components

The non-hydrostatic modeling framework includes two important
and essential components: (i) enhanced gravity, and (ii) dispersive
contributions (see, e.g., [15,16]). Both emerge from the consideration
of the momentum equation in the flow depth direction such that the
normal component of the velocity is retained, that was neglected in
simple hydrostatic model developments as discussed at Section 1. These
contributions, however, are modeled in terms of the slope parallel
velocity gradients or fluxes. For this, following Pudasaini [9], and
Pudasaini and Mergili [1], first consider the solid momentum balance
in the flow depth direction:

J
E (ws - ySfCS,f (wf - ws) - yxfscs,fs (wfs - ws))

0
+$ (usws - J/sfcs’f (”fwf - uswA') - y'sfscs"fs ("fswfs - uswA‘))

7}
+$ (Uswx - ysfcs’f (Ufwf - USwS) - Y{SCSJS (vfswfx - Usws>)

d
P2 (2 rf e () et (u, —2))

oT,. ~ oT,  OT, >

ZYs 225

=—(1=y/)0% =
(1-v)g <;4S PRl ralr>

+ L [C*f
aS

DG (wy —wy) luy —u, !

+ C;)’és (wfs - ws) |“fs - us|j_I - C;'st|uslas], 1

where, for simplicity, a, has been taken out. Note that since both C;)’é
and Cgés contain «; in their numerators (see, Appendix), appearance of
1/a, in (1) makes no problem. It is important to note that (1) contains
the normal stress T, from which we can construct the full description
of the normal stress in the flow depth direction that includes all the
essential components emerging from the flow dynamics and interfacial
momentum transfers in excess to the usual hydrostatic normal load that
is simply associated with the gravity load in the flow depth direction.

First, define a new variable 5 = z — b, the relative flow depth. Then,
following the procedure in Castro-Orgaz et al. [15] and Yuan et al.
[16], integrating (1) from the generic elevation z to the free surface
s, neglecting the shear stresses, and using the tractionless condition at
the free surface [1,9], we obtain an expression for the normal stress in
terms of #:

2,00 = (1-v]) & (h=n)
9 - s
# 2 (1=l (1= 1) = e (1, - 1,)]
+V - [Lu, =/ (Tpuy = Luy) —y[5C (Tpup, - Tou,)]
2 S w? — w? ’ 7 :
- [ws -rict (wf _ws) —ren (wfs - ws>]
1 s.f j—1
it w1
s
+Cp gy —u ™ Iy = L] = Gy wilu a1, |

(2)
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where

s s s
IS=/ wdz!, Ifs=/ wpdz!, 1f=/ wpdz';
z z z

wy =wy, = (Veug)n, wpy=wy, = (V-ug)m,

3
wf:w,,/—(V~uf)11; ®

Vug =0u;/0x +0v,/dy, V-uys=0us/0x+0vs/0y,
V-u; =0dus/0x +dv,/dy.

Now, depth-integrate w,, and define I, (similar structures hold for
fine-solid and fluid):

_ 1 /7 h b b
w5:=z/b wsdz’=wbx—(V~uS)§, wb»‘=u5$+usa_y;

z s s
I, :=/ wsdz’=/ wsdz’—/ wydz = hw, - I,
b b z

where b is the basal topography. Egs. (2)-(4) constitute the fundamen-
tal basis for the non-hydrostatic dispersive model development. With
(4), (2) takes the form:

C)

v = (1-y])g*th-n
d (. o ) N
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In this representation, the first term on the right hand side contains
the complementary relative flow depth, (h — #), and indicates that at
the bottom (y = 0) it is (1 — ysf ) g%h, and at the free surface (y = h) it
is zero. So, that term is the usual hydrostatic normal load often used
in shallow flow models together with the buoyancy effect ( 1- ysf )
Thus, the appearance of (h —#) in (1 - ysf ) g%(h — n) implies its linear
distribution from the bottom to the free surface, it is advantageous.
Therefore, we should also try to transfer the other terms in (5) to some
structures such that they contain some functions of (2 — ») and/or #.
This will be achieved next.

With its definition in (4), I s (similar for fine-solid and fluid) can be
obtained from (3) as:

Pmw g (vou) T ©)
.v_wbsn( us)z'

As we will see below, this helps in producing desired terms with
factors h — n and/or 7.

2.1.2. Effective normal loads

A. The solid normal load: Now, define D/Dt = d/dt+u,-V (similar
for fine-solid and fluid). Then, with (6), following the procedures as in
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Yuan et al. [16], after a lengthy calculations, (5) takes the form:
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X
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+ Chplul [, (h=m = (V) Snth-n), @)
which is the effective normal load for the solid component. Note that
(4) and (6) are utilized to obtain the structures associated with the
drags. Tyz, in (7) is written entirely in terms of the flow variables, flow
dynamics ‘and the phase-interaction terms. There are two types of terms
in (7). First, the slope normal acceleration terms associated with (h—7),
which are linear in 5. Second, the slope parallel (divergence, or flux)
terms that are either linear or quadratic in . However, it is interesting
to note that the interfacial drag contributions have two types of terms.
() In CDG, the associated term (10, — i0;) (h — #) has a factor (h — ) as
in the usual gravity and the acceleration terms (g? and D/ Dt). This term
vanishes at the free surface. (i) (V- (u; —uy)) %n(h — 1) is quadratic
in 5, but has a special form. Such term with factor » (h — ) does not
appear in other contributions in 7, . This vanishes both at the bottom
and at the free surface of the flow and thus has maximum in between
the flow depth. Similar analysis holds for the terms associated with

Is)és So, the interfacial drags bring completely new mechanisms in the
non-hydrostatic (dispersion) relations. The important point now is that,
due to their structures, the first terms in the drag contributions must be
(or better to) put together with the gravity and the acceleration terms,
g? and D/ Dt (associated with ). I consider these terms together in
obtaining the enhanced gravity. Furthermore, the D/ Dt are due to the
normal acceleration of the solid particles, and the relative acceleration
of the solid particles with respect to the fine-solid and fluid. So, all
g%, D/Dt and Cp terms (associated with (h — #)) basically represent
the normal acceleration, or force. All the other remaining terms in (7)
represent the dynamics and forcings in the slope parallel direction. For
this reason, I re-write (7) as the first group of terms with the factor (h—
n), containing the usual gravity (including buoyancy, (1 — ySf g%), and
the normal acceleration (D/Dt terms including virtual mass) and drag
terms (Cpg), and the second group of terms with # and #? representing
the slope parallel motion as:

=(1-7/)g*h—n)

+2 [0, —v/C™ (w0, — w,)

Isesfs (i
o _ys sCS Y(wfs_

)] (h—1n)
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s
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So, it is legitimate to call the first group of terms (with factor 4 —#)
the enhanced gravity, and the second group of terms (with factors #, #?
and n(h — n)) the dispersion. Together, they constitute the (effective)
non-hydrostatic normal load. This has been discussed in more detail
later in Sections 2.1.3 and 2.1.4. In (8), the components in the drag
terms have been split in to normal and slope parallel-type components
contributing to the enhanced gravity and dispersion relations.

To apply the normal loads in a depth-averaged formulation, we need
to depth-average Tz, in (8). For this, first define the phase-divergence
in slope parallel directions as: Uy =V -u,, Uy =V -u,, U=V -uy,
then, following Yuan et al. [16], integrate (8) through the flow depth
to obtain its mean:

1
‘Ezzx = (1 _yxf)gzth
s

F =] € (i = ) = r*C (i, — ,)] 52

1 A2 i1
-2 ey —u i (@) - )
s
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s
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which is the depth averaged effective solid normal load.

B. The fine-solid and fluid normal loads: As in (1), I consider
the normal components of the fine-solid and fluid momentum equa-
tions [1,9]. Then, following the procedure from (2) to (9), I obtain
depth-averaged normal stresses for fine-solid and fluid, respectively:
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The first terms on the right hand sides in (9)-(11) show the distinct
scalings for the solid, fine-solid, and fluid-phases in the three-phase
mixture flow. The solid and fine-solid pressures are reduced due to
respective buoyancies by the factors (1 - ysf > and yf The buoyancy

reduced normal load of the solid particles, ( — /), is due to the fluid
composed of water and very fine particles and the flne—sohds, and thus
ysf is the corresponding mixture fluid density normalized by the solid
density. Similar statement holds for fine-solid. For more detail on this,
see Pudasaini and Mergili [1].

The mean values of the normal components of stresses are required
to obtain the lateral (slope parallel) stress components, which for solid,
fine-solid and fluid phases are given by: a7, = aK}7,; .« fsTaxys =
WpsTo, Oyl = @yl where only the solid- phase contains the
earth pressure coefficient Ky due to its Coulomb frictional behavior
[1,9]. These lateral stresses enter the momentum balance equations as
the sum of the enhanced hydraulic pressure gradients and dispersion
relations. This is discussed later.

2.1.3. Enhanced (effective) gravities
From (7), or (9), (and similarly from (10) and (11)), I extract the
enhanced (effective) gravity for solid, fine-solid and fluid components,
respectively
- D ;._ _ -
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1 1

1 —
+; _f DGlll/—ll |j (wf—ws)
1 - -
+y—Cf5f|uf—uf Nl (wf—wfs)+C[f)wa|uf|af s (12)
fs

where the factors 42/2 do not appear due to the definition of acceler-
ation. These expressions can be obtained directly from (8) by setting
n — 0, i.e., the normal loads at the bed. This clearly indicates which
terms in (8) contribute to the enhanced gravity or the effective normal
load at the bed, and which other terms contribute to dispersive effects.
For vanishing fine-solid and fluid components, these reduce to the
simple enhanced gravity in Denlinger and Iverson [14], Castro-Orgaz
et al. [15] and Yuan et al. [16] for single-phase granular flow equations.
Our new multi-phase formulations include buoyancy reduced solid and
fine-solid normal loads as indicated by the factors (1 — y{ ) and y/f.x,
and the virtual mass forces associated with C. The virtual mass forces
alter the solid, fine-solid and fluid accelerations in the flow normal
direction (in D/Dr) that ultimately enhance the effective gravity of
the solid, fine-solid, and fluid phases. Furthermore, the drags between
the phases (Cps) and the viscous drags (Cpy ) appear only in our
enhanced gravity. Depending on the values of y,C,Cpg, Cpy and the
relative phase-velocities in the flow depth direction, enhancements or
reductions of the usual gravity loads can be substantial to dominant as
compared to the usual gravity loads, g=.

These enhanced gravity terms include the accelerations of the solid,
fine-solid and fluid components in the slope normal direction indicated
by D/Dt. Furthermore, (12) also includes the drag contributions in
the slope normal direction. The only common quantity in (12) is the
usual gravity load, g?. However, the enhanced gravities differ with the
surface normal accelerations of the solid, fine-solid and fluid phases.
Depending on the flow dynamics, interfacial momentum exchanges,
viscous drags, and the boundary conditions, one or two of them could
be substantially larger than the others. One prominent example is a
landslide impacting a reservoir or a water body [1,38,42]. In this
situation, both the enhanced gravity and the dispersion (see below)
of the water wave would be fundamentally different (can also be
large) as compared to the enhanced gravity and the dispersion of the
submarine landslide. As we will see later (12) are components of the
full non-hydrostatic model formulation.

2.1.4. Dispersive contributions

The main dispersive contributions for the solid, fine-solid and fluid
are denoted by DY, D" D" which are extracted from (9)-(11). I call
them dispersive (for snnp11c1ty of terminology, also, see [15]) and take
the form:

h? 2 2 s s, fs (172 2
D =K% (v2-rlct (v3-02)=yler (v2, - v2))
D rest Fspsfs
_E(Us_ysc (Uf_US)_ys C (UfS_US))
1 12
+Kja—€[c lu, —u~ (U, -U,)

+CSfS|ufs sl i (fo - Us) - C;)Vluslus as] >

- h 2 2 2 8 2 2
Dy, = = (U3, - rf, e/ (U7 - U3,) +ay 000 (U2, - U2))

D ‘
- (U =rhc" (U - Up) + a0 (U, - 1)) )]

1 h? -
ar F [__CAfAlufé —ul/ I(Ufs_Us)
N
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n 2 {2
X _ s 8,
Dy =1 [(Uf+afC (Uf

_ 172 fSpfs.f 2
5= US)+afC (Uf

v3.))
~uy)]

D s . Iselss
— o (Up + et (U= U,) +af e (U
1 A2 |1 |
_Zz[f Cpgluy —u V™! (U - U,)

+LC/Y/|uf—uf VU

yfs

= Up)+CL U | 13)

So, (12) and (13) imply that 7,, = §Zh*/2 + DYh/K, Tozyy =
& h? /24Dy h, T, = &5 h?/2+D* h. Hence, the effective basal normal
load is the sum of the effective gravity and (effective) dispersion.
Note that the factor 4 is taken out from the dispersion expressions to
properly adjust the fluxes, because o,7,, a, KXg2h? /2 + aD¥h =
ash [f*h/2 + D¥], etc., where f* = K*§ ’Z Later such structures will
appear in the lateral fluxes in the momentum balance equations, where
ﬁ;‘ h/2 and DY correspond, respectively, to the enhanced hydraulic
pressure gradient and dispersion.

In what follows, all the terms with % are the enhanced terms,
while these and all the D terms are entirely new contributions to the
Pudasaini and Mergili [1] model. These reduce to the non-hydrostatic
relations for single-phase granular flow in Denlinger and Iverson [14],
Castro-Orgaz et al. [15], and Yuan et al. [16]. It is important to note
that the enhanced gravities (12) and the dispersion relations (13) are
derived from the w components of the momentum balances from the
multi-phase phase mass flow model [1]. So, there are direct and strong
couplings between the solid, fine-solid and the fluid components among
these dispersion relations. As in the effective gravity, the dispersive
terms are strongly coupled, e.g., due to the interfacial drag and virtual
mass contributions.

2.2. The non-hydrostatic multi-phase mass-flow model

In what follows, I further develop the three-phase mass flow model
[1] by incorporating the enhanced gravities (12) and the dispersion
relations (13). The depth-averaged mass balance equations for the solid,
fine-solid and fluid phases are:

] ] 0
&(ash) + a(ashux) + a(ashvs) =0, (14a)
] 9 d

P (aysh) + a(a,shufs) + a—y(afshvfs) =0, (14b)
0 9 9

E(afh)+£(afhuf)+a—y(afhuf) =0. (140)

The x-directional depth-averaged momentum conservation equa-
tions for the solid, fine-solid and fluid phases are,

% [ash (us - u‘;m)] + % [ash (u? —uul™ + ﬂ;‘g + Df)]

+ % [ash (uy0, — uugm)] = hs¥, (152)
0 om d 2 x
E[afsh(ufs_”ﬁ)]+a[afsh(”fs +ﬂf52+D )]
a om X
+E)[ath <u/-SUfS —uvfs>]:h5fs, (15b)

%[afh(uf+u;m)]+a afh( +uu”m+ﬁf—+D")]

g
L P om)| = psx (150)
"‘a C(f Mfo+uUf ) = s C
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It is evident that the enhancements of the momentum fluxes depend
on f and D. Since the flow depth & is a common factor in the momen-
tum fluxes, the terms associated with D are proportional to 43, and the
term associated with § are proportional to h2. This, together with the
structure of D and § in the fluxes in (15), signify the highly non-linear,
non-hydrostatic (dispersion) contributions.

Due to symmetry, the y-directional momentum equations for the
solid, fine-solid and fluid phases can be written similarly here and in
all the following considerations. This is achieved by formally utilizing
the replacements: x «— y and u «— v, whenever necessary, both for
variables and associated parameters. Below, I present models for all
the fluxes, and source terms and forces in momentum equations for
multi-phase mass flows where I follow structures from Pudasaini and
Mergili [1]. I write those terms that include the non-hydrostatic terms
(enhanced gravity and dispersion). The other terms are as in Pudasaini
and Mergili [1] and are put in an Appendix for completeness.

The x-directional source terms in (15) are

,0b nz[0h  0b
S;‘:as [gx_mtanésg —g ™ ] a8, [dx + 0x]
+ O (uy —ug) uy —ug 7 L (g —uy) Juyy —ug
pG \"f s f s DG \"fs s fs s
- C;_Wusluslas, (16a)
. . 1., h 9%  9b
Sfy_afs[g —[—Egﬁa ox gfsa
- 2i % o & +i % s
Vrs Tox dy \ /% ox
+£ e 0ufY e ()ufs l +fox
dy Vrs dy Is| oz » P nN
- _C;){;A (g =) gy —u !
+ Py —upg) lup =g 7 = CL g Ju oy (16b)
1. h 9% b
SX = x_|_ 14z +fz
FE [g [ 287%; a; ox 8 ox
Jv ou
. FAT ) () 2 (52
I ox I ox oy \ 1 oy
6uf l f‘
- h rtN
- Less (up —ug) luy —ugp™!
7Cpe \Uy —Us) Uy — U
Vs
1 i
B 7le)st (up =ups) luy = =" = Cppupluglay, (160)
fs

where g’’? is obtained from &2 by replacing (l - ysf ) g% by ysf g% while
the other terms remain unchanged. The expressions in (16) are more
general than those in Pudasaini and Mergili [1] as they include the non-
hydrostatic effects together with the interfacial momentum transfers.
The structure of ¢ indicates that the enhancements of the forces asso-
ciated with g, including friction, buoyancy and basal and topographic
pressure gradients, depend on the sign and magnitude of ¢.
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Due to the acceleration in the slope normal direction, in (16), the
solid velocity is given by u, = (uy, v, w,), where w, = u,0b/dx+v,0b/dy
[16]. This indicates that for locally changing basal topography, the
surface normal component of velocity is important. Similar expressions
hold for the fine-solid and fluid components.

In (15) and (16), u¥™", uu’™, uv’™ are the virtual mass force induced
mass and momentum enhancements, § are the hydraulic pressure co-
efficients, v¢ are the effective kinematic viscosities, du/dz|, are the
xz- basal shear stresses, 7, are the enhanced non-Newtonian viscous
stresses, and Cp; are the drag coefficients. The momentum balances
(15) and the sources (16) indicate that the effective gravity enhances
the “hydraulic pressure gradients” (via the terms associated with f)
in the momentum flux, and the enhanced material loads at the base
as indicated by the terms associated with ¢ and g”, indicating their
extensive effects in the source terms. In total, the lateral flux for solid
is enhanced by a; [ﬂj‘ - /}f] h2)2 + a hDY, where, Y = K7 (1 - ysf) g%,
Similar flux enhancements emerge for the fine-solid and fluid phases.

The x-directional hydraulic pressure coefficients for solid, fine-
solid and fluid in (15) are:

br=K&. by, =&, by =48 a7
where K} is the earth pressure coefficient and ¢ are given by (12).
Above, I only wrote those terms that are new in the non-hydrostatic for-
mulations, that are f, ¢, g”” and D. Based on Pudasaini and Mergili [1],
all other terms appearing in the above model equations are explained
in the Appendix.

Reduction to existing models: By setting the fine-solid and fluid
fractions to zero (afs - 0,0y — 0), the new non-hydrostatic multi-
phase mass flow model reduces to the single-phase non-hydrostatic
granular flow models by Castro-Orgaz et al. [15] and Yuan et al. [16].
The major parts of g, g”, f terms, and entirely the D terms in (15)—(16)
are new to Pudasaini and Mergili [1] which are due to non-hydrostatic
contributions. Furthermore, the Pudasaini and Mergili [1] multi-phase
mass flow model is obtained by neglecting all the non-hydrostatic
contributions, i.e., by only considering g7 := <1 - y{) g%, g’;s = y/f.xgz,
g 1=g% DY =0,D% =0,D% =0,

2.3. Model structure and simulation strategy

2.3.1. A closed system of equations

The model (14)—(15) constitutes a set of nine equations for mass
and momentum balances (including the y-components) for three-phase
mixture mass flows in nine unknowns, namely, the solid, fine-solid and
fluid phase velocities in the down-slope (ug,u;.,u;), and cross slope
(vs-vf5,vy)  directions, and the respective phase depths
(hy =ashh; = ash,hy =ayh). Note that hy + hy  + h; = h, the total
material depth, and a, +a,+a, = 1 is the hold up identity. The model
is written in a well structured form of partial differential equations
and may be solved numerically once appropriate initial and boundary
conditions are prescribed [1].

2.3.2. Numerical simulation approach and scenarios

It is important to note that, in structure, (14)-(15) are the same as
in Pudasaini and Mergili [1]. It is advantageous, because the similar
analysis and numerical methods and tools as in Pudasaini and Mergili
[1] might be applied to solve the new system of non-hydrostatic multi-
phase mass flow model. In order to apprehend the rapidly changing
behavior of the flow variables, the model equations such as those
presented here are solved in conservative variables with high-resolution
numerical schemes [1]. This allows to extend the numerical strategy
from the usual multi-phase models to the non-hydrostatic multi-phase
models. So, the new model can be implemented in the advanced
GIS-based multi-phase software tool r.avaflow 2.0 [1,39]. However,

International Journal of Non-Linear Mechanics 147 (2022) 104204

complexity arises due to the new non-hydrostatic terms, particularly
associated with the higher order time and spatial derivatives. To avoid
instability, existing numerical solutions of the single-phase model only
considers an approximation of the enhanced gravity [16]. The aim
should be to include more general non-hydrostatic effects in the sim-
ulation tools, e.g., in the r.avaflow, to present a full application of
the non-hydrostatic, dispersive multi-phase mass flows. Eminent ex-
amples to use the new multi-phase non-hydrostatic mass flow model
to generate the best possible simulation results may include the 2018
Anak Krakatau volcanic collapse and also the potential catastrophic
failure of the west flank of the La Palma as well as induced tsunami
waves [39,43]. In these scenarios, the collapse of huge mountain flanks,
and rapid impacts at ocean may transfer tremendous energy into the
water body producing high amplitude complex dispersive surface water
waves including the dispersive submarine mass transports and turbidity
currents, pressing for the use of coupled, non-hydrostatic multi-phase
mass flow models. However, application of the model to such natural
events would demand substantial additional works, and corresponding
parameter estimates, either derived from the field measurements or
back calculations, requiring observation data, which is out of scope
here.

As discussed above, relations (12) and (13) introduce higher or-
der spatial and time derivatives in the momentum fluxes. The new
enhanced gravity and dispersion may lead to a complexity in nu-
merical integration of the model equations, and thus may require a
fundamentally extended, or new and complicated numerical method
to properly solve the model equations. That was the case even for the
simple single-phase granular flow models [15,16]. So, below, I propose
some reductions of the normal load ignoring the time derivatives in
dispersion, and approximations of the time derivatives in dispersion
and enhanced gravity. These reductions can be utilized in numerical
simulations as they simplify the complexity.

3. Possible simplifications
3.1. Reduced normal load — ignoring the time derivatives in dispersion

One way to avoid computational difficulties, but still include the
new effects, is to assume a negligible local time derivatives (d/d1) in
(9). This can be a reasonable assumption, e.g., after the initial impact
of the landslide at the water body and during continues impact. Another
possibility is to ignore all the D/ Dt terms in (9). Yet, the reduced solid
normal stress includes non-hydrostatic effects due to buoyancy, virtual
mass, drags and slope parallel divergence and relative divergence,

_ 1 11 , o
e = (1=2)) 500 = 5 o Oy —w ™ (@ - )
N

fs

. j—1 (- - s -
+ C;)G |ufx _uslj (wfs - ws) —CEszluslas]
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where R in 7., stands for the reduced normal stress. And thus,
the corresponding reduced enhanced gravity and reduced dispersion
expressions are given, respectively, by

. 1 i—1 (- -
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L o -
oK [chtiuy —u b~ (U, -,

+ cggﬂufs —u, 7 (U}, - U,) - C lu, U, as] . 19)
From (12) and (13), similar reduced expressions can be obtained
for the fine-solid and fluid components. For single-phase granular
flow without the fine-solid and fluid components, (19) would further
drastically reduce to §7, = g* + Cji|uy| and DY, = KXh*UZ/12 -
K*hzcsvm |U,. However, in general as in (12) and (13), the full
descrlptlons of ¢Z and DY (similar for fine-solid and fluid compo-
nents) should be con51dered in simulating non-hydrostatic mixture
flows.

3.2. Approximations to time derivatives in dispersion and enhanced gravity

One of the major difficulties associated with the non-hydrostatic
model presented above is the presence of the time derivatives in en-
hanced gravity and dispersion. In simple situations without interfacial
drag and virtual mass, the dispersion in (15a) is given by

a [KS o, 2
& |:1—£ash US - DVI“A‘lUS
o [Ky S , (o 9 F)
=9 (g nlvr- (2 9
ox [12“ s\ \a T Y%y
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=9 [Zan3lu 9%
ax[n“ s axaz+ayat

d 0
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From a computational point of view du,/dt and dv, /ot in (20) may
pose great difficulties. So, it is desirable to find some expressions for
ou,/ot and dv, /ot in terms of spatial derivatives, flow variables, and
parameters, but no direct involvement of (the time and) time deriva-
tives. This is a challenging task. However, we can develop simplified
expressions for these for non-inertial flows. This can be achieved,
e.g., by combining the simple mass and momentum balance equation
for solid from (14a) and (15a), by ignoring all extra forces (which,
however, could be considered to include more complex situations).
Which is equivalent to assume that all the applied forces balance each
other. This results in a simple expression as:

Oug du du

=, S, D 21
ot . “ox U5y @b

UY - 2C;)1/|us|Uv}]

-2C3, 1u,|U; }] (20)

Inserting (21) in to (20), I technically remove ou,/dt, which, how-
ever, is highly non-linear and very complex as it involves the fifth order
terms (combining flow depth and velocities) and third order deriva-
tives. Simplified expressions for the fine-solid and fluid components can
be developed, and respectively take the form:

ou ou ou
fS s fs
_ 22
ar | “sTox T (22)
ou ou ou
f f f (23)

R

Similar expressions hold for dv,/dt,dv,,/dt and dv,/ot. Then, the
dispersion term containing the time derivatives, together with U? and
the viscous drag in (20), reduces, for solid-phase, to:

DU, oug Jvy

v, dug
g | U = 2112
Dt pv Ul ox dy

U2
s ox dy

By luslUy. (24)

; 2
Expressions for U T

DU,/Dt and U7 —
forms.

DU, /Dt take analogous
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Similarly, with somewhat lengthy calculations, we can write the
time derivative term, Dw,/Dt, in the enhanced gravity (see, Sec-

tion 2.1.3) as
5005 dug (9, 2
dx dy Jdy

Dw, 1 " dug 2
Dt~ 2 ox

oh (du, v, oh oh\ [ Ous . Ou,
+— + +lu,==+o,2= ) [ =+ , (25
ot ( ox " ay “ox %%y ) \ox T oy (25)

where the topographic slope changes (db/dx, 0b/dy) has been ignored,
which could easily be included. Similar expressions as (25) hold for
fine-solid and fluid components, Diw,/Dt, D, /Dt.

Due to the definition of ,, the time derivative of the flow depth,
0h/at, still remains in (25). However, this can be obtained by summing-
up the mass balance Egs. (14) for the solid, fine-solid and fluid phases:

14

0
o Ix ”s+0‘fsufs+‘xf”f)]_a_y [h (asus+afsvfs+afvf)],
(26)

where a; +a,, +a, = 1 has been employed. This way we can avoid the
time derivatives in the terms associated with dispersion and enhanced
gravity.

4. Analysis of the simplified dispersion relation

Consider the dispersion for solid from (13):

n? 2 : 2 2 ) 2 2
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The flux in the momentum balance shows that in total the dis-
persion relation contains third order terms in flow depth, and third
order derivatives of the flow velocities. These are the highest order
terms therein. So, it is important to analyze the terms appearing in
the dispersion relation, and additionally seek its simplifications and
consequences.

4.1. The role of drag

For slowly varying slope parallel divergences, U2, U2 ,U? can be
neglected as compared to the other terms. Then, (27) reduces to
h* [ D s s
D} =k 55 | 5 (U =/ € (U =) =1l e (U, - U))

1w o
K% [ S, -7 (U, - Uy)

+Cpp g~ (U, = U,) = Cpy lulU, g
(28)
For negligible virtual mass force, (28) simplifies to
DX = _Kxh_z DUS
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Moreover, for non-accelerating flows, the terms with D/ Dz vanish, and
(29) further reduces to

D=k L2 [ (U, -u,
s =K (Cogley —wl (U, - U
+C g —u V7 (U - U,) - O lu, U, as] . (30)

So, the interfacial and viscous drag may play an important role in
generating dispersion relation in mixture mass flows which was not the
case in the single-phase mass flows [15,16].

4.2. Negligible dispersion

In the most simple case, interfacial drags and virtual masses may be
neglected. A situation can arise such that the dispersion effect could be
ignored. Then, from (15a) and (27), by integrating o [aSth] /ox =0
with respect to x, I obtain:

DU, .
Dté - 2C2W|uS|US> =Py, (€20)]

X

K
—sozsh3 <UY2 -

12

where P, is a constant of integration. However, determination of P,
may involve complex physical processes (explained in Section 4.3-
Section 4.5). For simplicity, assume a channelized flow, so the variation
of flow dynamic quantities with y is negligible. For notational conve-
nience I write u = u, and f = Cj)V. Then, for u; > 0, (31) reduces to

dzu 62 1 2 01,4 2 a 5

a2z )—2(5; ™ =—P¢, 32
oot o2 (2") (ax) +ﬂax(”) 7 (32)
where

12P

Jo

Pr= e 33
4 KXa h? (33)

I call P the (dissipative) prime-force coefficient (or, simply the P-
force coefficient). Eq. (32) can be solved analytically only with some
further assumptions. And, the solutions are presented in Section 4.3.
If the solid particle distribution is uniform and the flow height can be
approximated (by a constant), e.g., for a smooth flow, then, P, is a
constant. Eq. (32) can further be simplified as follows.

L. Negligible (du/dx)?: First, assume that du/dx is small and thus
(0u/dx)* can be neglected. Then, integrating (32) with respect to x, I
obtain:

%+%(%u2)=—ﬂu2—73fx+a, (34)
where a is a constant of integration, and I call —P,x the prime-
force (or, simply the P-force), per unit mass. With this, I draw an
important conclusion, that for spatially slowly varying velocity field,
non-dispersive flows degenerate into an advective-dissipative system
with a complex source term. Here, dissipation refers to the viscous
dissipation due to the drag contribution —gu?, and also —P;x, that will
be elaborated later. When Pfo — 0, or A is large (enough) then Py —0.
Alternatively, consider sufficiently small x. In both situations, P,x is
negligible, and (34) becomes an inviscid, dissipative Burgers’ equation
developed by Pudasaini and Krautblatter [44]:

ou J 1 2\ _ 2

E+a—x(§u>—a—ﬂu. (35)

From a simple physical consideration, following Pudasaini and
Krautblatter [44], « can represent the net driving force for the landslide
motion, defined later at Section 5.1. So, (34) can be viewed as the
formal extension of the Pudasaini and Krautblatter [44] landslide
velocity equation, who also constructed numerous exact analytical
solutions for (35), including simple to very sophisticated ones.

The super inviscid dissipative Burgers’ equation: There are two
fascinating aspects of (35). First, by setting the dispersion structure
(which is internal to the new model developed here) to zero, I obtained
the reduced equation of landslide motion without dispersion in Puda-
saini and Krautblatter [44]. Second, the emergence of (35) explicitly
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proves the consistency of our new model with dispersion. However,
when P,x # 0, (34) is the extension of the inviscid, dissipative
Burgers’ equation in Pudasaini and Krautblatter [44], for which, no
exact analytical solutions have so far been developed. Yet, the model
(32) is more complex and general than (34). For this reason, I call
(34) the extension, and (32) the super generalization of the inviscid,
dissipative Burgers’ equation.

II. Time independent flows: Second, assume a time-independent
(steady state) flow. Then, from (32) we have
? ., ou\? 9 /4
9 -4(—) 282 (12) = —2P,. 36
oo W) =45r) 25 () s (36)
Since a,, K} and h are positive, the nature of solution depends on
the sign of P, and its magnitude in Py as given in (33).

4.3. Analytical solutions

Physically meaningful exact solutions explain the true and entire na-
ture of the problem associated with the model equation [45]. The exact
analytical solutions to simplified cases of non-linear debris avalanche
model equations provide important insights into the full flow behavior
of the complex system [44], and are often needed to calibrate and
validate the numerical solutions as a prerequisite before running nu-
merical simulations based on complex numerical schemes. So, such
solutions should be developed, analyzed and properly understood prior
to numerical simulations. This is very useful to interpret complicated
simulations and/or avoid mistakes associated with numerical simula-
tions. Here, I construct some exact analytical solutions to (36) for yet
different simplified cases.

L P, =0, Vanishing prime-force: With this, the exact solution for
(36) takes the form:

u(x) = C, exp [% exp(Zﬂx)] . (37)

There are two integration parameters C,,C, to be determined,
e.g., with the value and the slope of u at a given point.

II. p = 0, Vanishing drag: For this, the exact solution for (36)
becomes more complex:

o = \/=P; exp (—C,) tanh [exp (C)) (C, + x)]
u(x) = ) (38)
y/tanh? [exp (C,) (G, +x)] — 1

where the two integration parameters C;,C, are to be determined.
The solutions (37) and (38) with some parameter values are presented
in Fig. 1 showing the exponential increase in the velocity field as a
function of the travel distance. Where, for comparison, the solution (37)
has been shifted down by about 2. However, more realistic solution is
presented below when both P, and § cannot be ignored.

III. Small du/dx: Then, (au/ax)2 can be neglected in (36) which,

after integration, reduces to
du 2
— o — —P,x, 39
u Ix a— fu X (39)

where « is a constant (the net driving force, see, Section 5.1), and

T; =a—pu - Prx, (40)

constitutes the total system force. The model (39) includes both the
parameters # and P, and extends the Pudasaini and Krautblatter [44]
landslide velocity equation for the time-independent motion for which
their model corresponds to P, =0. With the initial condition u(0) = 0,
the exact analytical solution for (39) yields:

u(x) = \/% \/ [1 - exp(=28x)] = P, [(2Bx — 1) + exp (-2fx)], (41)

where P, = 1 L73'f. I call P, the unified prime-force coefficient, which

2a
isa dimensionlgss number (quantity), and emerged here in the new
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Fig. 1. Velocity fields represented by the solutions (37) with parameters C, = 0.05,C, =
1.0, = 0.075; and (38) with parameters C; = 0.01,C, = 0.005,P, =2.5x 107°.

solution (41). It is induced by the prime-force coefficient Py, and
also includes other force components, the net driving force «, and the
viscous resistance, represented by p.

4.4. Postulation of the prime-force: —Px

The prime-force coefficient -P, in (32), and the prime-force ~Prx
in (34) appear systematically. They emerged from our new modeling
approach, with physical-mathematical foundation, from integrating the
rate of acceleration, and the acceleration itself. This is exactly the rea-
son why —P,x is a dissipative (or anti-dissipative) force, and —P, is the
spatial rate of the prime-force along the slope. So, the new prime-force
is physically meaningful. The values of P, should be estimated with
the dissipative processes taking place along the channel. It requires
some extra and proper understanding of the flow dynamics to exactly
determine P, in (32) and, thus, the force —P,x itself. However, I have
formally postulated (or invented) a new force mechanism, the prime-
force —P,x, and have shown the physical ground for its existence. Due
to the presence of the term ~Prx, the landslide velocity model (39),
and its solution (41) are novel. The term —P;x in (39) adds some
dissipative force that results in the deviation of the solution from the
reference solution, P, = 0, produced by the driving force « and the
viscous resistance associated with . We can perceive —P,x in different
ways. It can be seen as the congregate of space dependent dissipative
forces. Yet, —P,x can be realized as any additional force other than the
driving force « and the viscous resistance —gu? in their classical forms,
which, unlike —P,x, do not contain any spatially varying dissipative
contributions. As it is a completely new term and conception, its
physical meaning and significance is worth exclusive elaboration in
(32), (34), (36), (39), and (41). As demonstrated below in Figs. 2 and
3, the prime-force turned-out to be very useful in controlling the mass
flow dynamics, or any other dynamical system, that can be described
by the structure of the model equations presented here.

4.4.1. Constraining P,

We need to physically constrain P, in (32). Here, I present two
possible scenarios. Without loss of generality, I impose physically le-
gitimate and mathematically consistent conditions on the velocity and
its derivatives at some position x, somewhere along the channel, or at
appropriately chosen near (landslide) source location.

Scenario A: First, consider a plausible, but typical velocity and
velocity gradients with magnitudes as: u(x,) = 35,(du/0x)(x)) =
0.01, (0%u/0x?) (xo) = 0.00021, and § = 0.0019. Then, from (32),
by neglecting the time variation of du/dx, P, assumes the value on
the order of —0.0085 and P, = —0.3. However, similar values of P,
and P, can be obtained with other physically admissible choices of
u(xg) . (0u/9x) (xo) . (0%u/9x?) (x,), and B.
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Fig. 2. The landslide motion enhanced by the prime-force —P,x, for P, <0 given by
the solution (41), where P, = P,/ (2af). For any value of P, <0, no matter how close
is it to 0, the system continuously deviates away from the reference state P, = 0.
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Fig. 3. The landslide motion controlled by the prime-force —P;x, for P, >0 given by
the solution (41), where P, = P,/ (2af). The constrained velocity dome-curves and the
reduced travel distances are shown. For any value of P, > 0, no matter how close is
it to 0, the system continuously bends below the reference state 7, = 0.

Scenario B: Second, consider another plausible, but fundamentally
different scenario, such that the velocity attains its local maximum
somewhere at x, in the channel (e.g., a contracting flow). This is
mathematically equivalent to (du/dx) (xo) = 0 and (9°u/dx?) (x,) is
negative, say —0.00032. With this, for the typical velocity of u (x,) = 35,
the estimated value of P, is on the order of 0.0112, and P, = 0.4. Again,
similar values of P, and P, can be obtained with other physically
admissible choices of u (x;) , (9u/dx) (xy) and (9%u/9x?) (x,).

4.4.2. Dynamics of the prime-force —P;x

Solutions presented in Fig. 2 for Scenario A with parameters a = 7.0
and g = 0.0019 (as in [44]) show how the negative values of Py (thus,
the positive additional prime-force —P,x) enhances the motion from
that discarding the effect of Py, ie., Py =0.As the value of P, (or Py =
2ap P,) decreases, the P-force increases, and the velocity continuously
deviates away from the reference (Pf = 0) state (solution). Even a very
small value of P, pushes the system away from the reference state,
and it continues to do so as P, decreases. Thus, the term —P,x with
P, < 0 strongly weakens the drag force, adds to the pre-existing driving
force, and thus the reference-state is never reached. It can be a possible
scenario as the mass travels further downstream such that the drag
force is always weaker than the net driving force and the additional
force generated by the new term, —P,x, along the slope. This means
that, as long as the condition (a — P;x) > fpu® is satisfied, the system
accelerates, always.

Even more interesting, and perhaps physically more important, is
the situation when P, > 0. This induces a spatially varying additional
dissipative force resulting in the reduction of the total system force
T; in (40) than before with the reference state, the solution with
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P, = 0, which effectively means that the mass decelerates as it slides
downstream. This results in the reduced motion of the landslide. Then,
depending on the magnitude of P, (or P, = 2af P,), both the velocity
and the travel distance will be reduced significantly to dramatically.
The solutions are presented in Fig. 3 for Scenario B, with parameters
a = 7.0 and g = 0.0019, showing differently architectured beautiful
dome-like constrained velocity fields and the firmly reduced mobility
with increasing values of P, > 0. Interestingly, no matter how small,
the novel observation is that, any positive value of P, results in the
significantly reduced mobility (velocity) and the run-out. This can
happen, if there emerges any (other) energy dissipation mechanism
along the slope. This effectively means that the total system force T; is
continuously reduced as the mass slides downslope. So, after a certain
position, the situation may prevail such that fu*> > (« — P,x), and the
system decelerates along the slope, always, as long as P, > 0. This
results in the reduced motion and the travel distance.

Both Figs. 2 and 3 demonstrate that the term —P,x in (39) can
quickly and strongly compel the system away from its reference state
(P, = 0). From the physical point of view, the P-force (-7, x) is associ-
ated with any possible spatially varying dissipative (or anti-dissipative)
force. This may include any elements of forces that are not contained in
a and p. The Coulomb-type force in « and the drag force associated with
p are almost exclusively used in mass flow simulations. However, the
spatially dependent P-force, postulated here, is entirely new, that was
made possible with our modeling process. Yet, as revealed by Figs. 2
and 3, it helps to fundamentally and precisely control the dynamics, de-
position and run-out of the landslide. I formally summarize these results
in a Theorem, which, for time-dependent processes, is a postulation.

The P-force Theorem 4.1: There exists a unique number P, > 0 such
that the landslide motion (run-out) described by the dynamical equation
% + % (%uz) =a—pu® - Prx,
can be precisely controlled as expected. Here, t is time, x is the position
along the slope, u is the landslide velocity, « is the net driving force, p is the
viscous drag coefficient, and P, is the prime-force coefficient.

(42)

4.5. The prime-force: Essence, implication and use in simulation

Here, I further explain the essence and application potential of the
new prime-force. Practitioners and applied researchers are frequently in
trouble in controlling the motion and run-out of mass flows. One of the
biggest problems in dealing with the natural mass flow events is the
proper simulation of their flow velocities and run-out distances. This
also applies to industrial mass transports. We know that, more or less,
until now, different forces are used in a way simulations best fit the
data. The considered forces are sometimes very low (almost none) and
sometimes substantially (much) higher than reality [38,40,46—48]. This
clearly indicates that there are some physical processes operating in
nature we were not aware of before. Here, I have formally proven that,
in principle, such process exists, which can be quantified. The prime-
force does exactly this by controlling the motion in a precise way. My
simple model, and particularly the emergence of the new prime-force,
—P,x, can tremendously help to address this long standing problem.
In this respect, the model (39), and its exact analytical solution (41),
can be very useful for practitioners and engineers in efficiently and
quickly simulating the motion of the landslide down the entire slope,
accelerating and decelerating motions, and deposition as it comes to an
standstill in a fully controlled manner.

There are two important aspects. (i) I have physically and math-
ematically proven that a new force structure, the prime-force, exists
which is extra to the known frictional or viscous forces. (ii) There
are challenges related to the correct reproduction of field observations
through simulations. Often, we have difficulties in adequately back-
calculating the observed mass flow events. The prime-force is induced
by the rate of spatially varying dissipative forces, but not merely the
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spatially varying friction and viscosity parameters. So, the prime-force
(i) will help to overcome the challenges in (ii) and accordingly support
the practitioners. However, if it is only about the spatial distribution
and evolution of friction and viscosity parameters, which we still do
not at all understand, and also various numerical issues (e.g., cell size,
topography and flow boundary), both do not involve the spatial rate of
dissipative forces, the challenges in (i) might still be addressed without
the prime-force.

The Coulomb force cannot contain all the friction effects. The same
applies to the viscous drag. As simulations often contrast the observa-
tions significantly, and none of the forces we know can reproduce the
observation, there must be something extra to the Coulomb and viscous
drag forces in the form we already know. The prime-force does exactly
this. The prime force congregates all forces with spatially varying rate
of dissipations that are not in « and f, and complement to what we
know. The prime-force may even combine the Coulomb and viscous
forces and generate a spatially varying rate of dissipation. One may
yet think of producing similar results, as done above by the prime-
force, by means of other forces which we know already. However, we
cannot achieve this by changing basal friction and/or the viscous drag.
First, it is not possible in a classical way with Coulomb friction. The
exact solution (41) is constructed by assuming that « does not vary
along the slope, while the P-force, —Prx, by nature, does. The same is
true for the drag force. Second, even by spatially varying the Coulomb
friction (i.e., ) and/or the viscous drag (), the motion, as controlled
by the prime-force in (39), cannot be achieved to precisely reproduce
the observed run-out distance. Physically, § is bounded from above,
so often it is not able to control the motion in an appreciable way.
Moreover, by definition, the viscous drag cannot bring the motion to
a halt. But now, we can formally accommodate any additional energy
dissipation mechanism in the P-force accomplishing the observed effect
rather than changing the Coulomb friction, whose value (as mentioned
above) is often used arbitrarily in simulation to fit the data, or it does
not exhibit any admirable effect.

For granular, debris and particle-laden flows, several situations may
arise where the dissipative (or anti-dissipative) force can increase (or
decrease) as the mass moves downslope. There can be several factors
aiding to the prime force. I mention some possible scenarios that may
contribute to the spatial rate of the prime-force, i.e., Pr. (D Often the
debris flow heads and lateral flanks become more and more granular
dominated, or frictionally stronger due to phase-separation and/or
particle sorting. These are observed phenomena [32,33,37,49]. (ii) The
collisional and viscous dissipations can increase as flow moves on,
e.g., by added particles and fines (the situation prevails due to basal
erosion and entrainment) and increased agitations [1,32,50,51]. The
viscous resistance can also increase due to added fragmented fine parti-
cles, e.g., in rock-ice avalanche motion [52]. (iii) The energy dissipation
may increase in the downstream as the flow transits, e.g., from the
glacial surface to the gravel-rich, or the rough moraine surface. (iv)
Detailed topographic effects [38], that could not be resolved otherwise,
may also be included as an energy dissipation mechanism.

In reality, the prime-force coefficient, P, can be a complex function
of some or all of those physical phenomena described above, and any
other permissible circumstances associated with the dissipative mass
flows with the rate of dissipative forces along the slope. Its admissible
forms are yet to be determined. Still, P, could also be constrained
from laboratory experiments or from the field data with respect to
the observed dynamics and the run-out. Alternatively, the practitioners
may ascertain P, in empirically adequate ways, if they prefer to do so.
This adds an additional uncertain parameter to the simulations, besides
the existing ones. This may make parameter calibration and predictive
simulations even more difficult, but helping to control the landslide as
observed. However, I mention that, as the prime-force is a new concept,
further intensive research would help to boost its clarity and expedite
its practical applications.
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Analytical solution presented in (41) formally proves that the new
dissipative force appreciably controls the motion and runout. Depend-
ing on its sign, it can enhance or control the motion, equivalently,
stretch (Fig. 2) or reduce (Fig. 3) the travel distance (or coverage
area). With this, we can now formally include the new dissipative
force ~Prx (similarly in other directions) in the list of forces in the
momentum balance Egs. (15), and implement the prime-force in any
simulation of mass flow. There are some technical aspects to consider
while implementing the new force in computing. (i) Note that, P, are
relatively small numbers. (ii) In general, we can have different P, for
different phases. (iii) Because of the possible directional inhomogeneity,
P, can be different in x and y directions, say P, and P;,. (iv) We
can formally include —a,P,x in the list of forces in (16a), say at the
end of it, similar for (16b) and (16¢) with arg and a;. (v) For the y-
direction for solid, we should use —a,P;,y, but we should remember
that the outward directions are the increasing directions. Similar for
other phases in y-direction. So, in principle, the prime-force can be
relatively easily included in any computational softwares, such as the
r.avaflow [39,53] in a straightforward way.

5. A simple dispersion equation

Reducing the sophistication, I consider a geometrically two-
dimensional motion down a slope. Furthermore, assume that the rel-
ative velocity between coarse and fine-solid particles (u,,u,) and the
fluid phase (u ) in the landslide (debris) material is negligible, that is,
ug M usg ~up =: u, and so is the viscous deformation of the fluid. This
means, for simplicity, we are considering an effectively single-phase
mixture (consisting of solid particles composed of coarse solid and fine-
solid, and viscous fluid) flow [44,51]. Then, by summing up the mass
and momentum balance equations in Section 2.2, I obtain a single mass
and momentum balance equation describing the motion of a landslide
(or a mass flow) including non-hydrostatic contributions as:

oh

E+—(h w=0 (43)
—(hu)+ 2 [h{u + (B, +ayfy) g + (@D, +a,Dy) }] =hs,  (44)
where,

ap = (1-a),
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are the fluid fraction in the mixture, the coefficient emerging from
the hydraulic pressure gradients for the solid and fluid including the
enhanced effects due to non-hydrostatic contributions, the dispersion
contributions emerging from the non-hydrostatic consideration, and the

source containing different forces. Together with the mass balance (43),
the momentum balance (44) can be written as:
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The second term on the left hand side of (45) describes the ad-
vection, while the third term (in the square bracket) describes the
extent of the local deformation that stems from the hydraulic pressure
gradient of the free-surface of the landslide in which (1 - a,) g?dh/dx
emerges from the hydraulic pressure gradient associated with possible
interstitial fluids in the landslide, and the terms associated with w are
the components from enhanced gravity. The fourth term on the left
hand side are extra contributions in the flux due to the non-hydrostatic
contributions. Moreover, the third term on the left hand side and the
other terms on the right hand side in the momentum equation (45)
represent all the involved forces. The first and second terms on the
right hand side of (45) are the gravity acceleration, effective Coulomb
friction that includes lubrication (1 -7 ) liquefaction ( ) (because,
if there is no, or substantially low amount of solid, the mass is fully
liquefied, e.g., lahar flows), the third term with @ emerges from en-
hanced gravity, and the fourth term is the viscous drag, respectively.
Note that the term with l—ySf or ysf originates from the buoyancy effect.
By setting ysf =0 and a, = 1, we obtain a dry landslide, grain flow, or an
avalanche motion. However, I keep ysf and «, also to include possible
fluid effects in the landslide (mixture).

Note that for K; = 1 (which may prevail for extensional flows, [44]),
the third term on the left hand side associated with dh/dx simplifies
drastically, because { ((1 —v! ) K, +7y} ) +(1-ay) } becomes unity.
So, the isotropic assumption (i.e., K, = 1) loses some important
information about the solid content and the buoyancy effect in the
mixture.

(45)

5.1. A landslide dispersion equation

For simplicity, I introduce the notations as: b = {a, (K, - 1) +1},
(1 —}’sf)asﬂsgz], and g = C; . Here, b,a and g are the
pressure parameter, net driving force and the viscous drag coefficient,
respectively. Assume that the time-dependent terms in (45) can be
ignored in relation to other terms. Moreover, let hu = F be a typical
flux, and du/dx is a small quantity such that (du/dx)* is negligible.
Consider the definition of w from (4). Then, with a long wave approx-
imation (suppose that # can be approximated by a constant, or simply
parameterize it, 4 = h,), the momentum balance (45) can be reduced
to yield a third-order inhomogeneous non-linear ordinary differential
equation in u with parameters Dp,Dg,, Dg,, a, f:

a = [g"—

%u 0%u
Dp— +Dg,—
P S152

= (46)

+ (u+ Dyy) g—z =a- pu?,
where, Dp = +1bhF, Dg, = £+ [—ﬂbh0+;43 | F, Dgy = +1p pa,F
are associated with dispersion. Here the + sign correspona to the
primarily expanding or contracting flows, which can be obtained by
separately analyzing the dispersive contributions in (45). I call (46)
the landslide dispersion equation in which D, plays the primary role
as it is associated with the highest order term therein, while Dg; and
Dy, play the secondary role. So, Dp is termed as the prime dispersion
parameter. This is a simple, yet very interesting, dispersion equation
that characterizes the dispersion effect in the mass flow.

5.2. Solution to the dispersion equation (46)

The effect of dispersion in (46) is analyzed in detail. Without the dis-
persive terms, (46) is the simple steady-state landslide velocity model
developed in Pudasaini and Krautblatter [44] I numerlcally solved (46)
0.0, —(0) 0.5, —(0) 0.0. The

with the boundary conditions u(0) =
last two conditions are additionally required due to (ﬁspersmn related
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Fig. 4. The landslide velocity distribution with dispersion (D, =327,Dg, =17,
Dy, = 0.03) and without dispersion (D = 0.0,Dg; = 0.0, Dg, = 0.0) described by (46).
With dispersion D, depending on its magnitude, the landslide behaves fundamentally
differently by producing meanders of variable intensities around the reference state
without dispersion.

dynamics. All conditions can be fixed based on the physics of the un-
derlying problem. The results are shown in Fig. 4 both with dispersion,
Dp =327,Dg = 17,Dg, = 0.03 (representing a realistic situation with
b=10hy = 7.0,F = 140,a, = 0.65, u; = 0.36 (5, =20°) ,a = 7.0, =
0.0019), and without dispersion effects (Dp = 0.0, Dg; = 0.0, Dg, = 0.0).
To demonstrate the influence of dispersion parameters D on the dynam-
ics, I have amplified, downplayed, or ignored their values with different
scales as 2.0xD, 1.0xD, 0.1xD, 0.0x D, where the last value corresponds
to the neglection of all dispersion effects. Fig. 4 clearly reveals funda-
mental effects of dispersion on the landslide dynamics. Moreover, the
velocity distribution with dispersion is more complex due to its associa-
tion with the higher-order derivative terms in (46). Dispersion produces
a wavy velocity field of changing intensity about the simple reference
state without dispersion. Local surge developments and attenuations as
well as enhanced or hindered motions are often observed dynamical
spectacles in landslides and debris avalanches. Such explicit description
of the dispersive wave is the first of this kind for the avalanching debris
mass. Once the landslide is triggered, the dispersive solution deviates
significantly away from the non-dispersive one. However, after a suf-
ficiently long distance, the dispersive solution tends to approach the
non-dispersive state given by (41) with P, = 0. Yet, significantly differ-
ent scenarios can be generated with other sets of dispersion parameters.
Alternatively, as Dp — 0.0,Dg; — 0.0, Dg, — 0.0, the dispersive wave
coincides with the non-dispersive elementary solution. This proves the
consistency of our model and also highlights the essence of dispersion
in mass transport.

5.3. Influence of the solid volume fraction in dispersion

The solid volume fraction «, is the key (physical) parameter in
the mixture that governs the landslide motion and deformation. The
strength of the landslide material is directly related to a,. The solid vol-
ume fraction influences the parameters Dp, Dg,, Dy, and « in the dis-
persion equation (46). So, here I analyze how the solid volume fraction
regulates the landslide dispersion. Landslide velocity distributions with
dispersion for different solid volume fractions in the mixture are pre-
sented in Fig. 5. Dispersion is minimum for the fully dry material, and
maximum for the vanishing solid fraction, akin to the fluid flow. The
dispersion intensity increases energetically as the solid volume fraction
decreases. This reveals that dispersion is related to the fluidness of the
material. However, for higher values of «, dispersion becomes weaker
and weaker far downstream as compared to that near the source region.

5.4. Influence of the basal friction in dispersion

The basal friction angle 6 is a dominant physical parameter con-
trolling the landslide dynamics. As for the solid volume fraction, the
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Fig. 6. Landslide velocity distributions with dispersion described by (46) for different
basal friction angles §. Dispersion increases strongly with decreasing basal friction
angle.

weaker material is associated with the lower friction angle. However,
unlike the solid volume fraction, basal friction influences only D, D,
and « in the dispersion equation (46), but not Dp. Landslide velocity
distributions with dispersion for different frictions in the mixture are
presented in Fig. 6. Dispersion increases strongly with decreasing values
of §, with highest dispersion taking place for the motion of a frictionless
material (6§ =0°), akin to a fluid flow. However, for higher values of
5, dispersion becomes relatively weaker as the landslide continues to
propagate downstream.

Both the solid volume fraction and the friction angle define the
mechanical responses of the landslide material against the applied
forces, and govern the landslide motion and deformation. However,
they regulate the landslide dynamics fundamentally differently, so are
the dispersions with changing solid fractions and the basal frictions.
These facts are demonstrated in Figs. 5 and 6. Although at the first
glance, they look similar, the dispersion intensity is higher with the
change of the basal friction as compared to that with the solid volume
fraction. This can be explained, because basal fiction is the main phys-
ical parameter determining the landslide dynamics. These results are
in line with our intuition and experience, and indicate the consistency
of my model. This also sheds light on the physical significance of the
simple dispersion model derived here.

6. Summary

I considered the multi-phase mass flow model by Pudasaini and
Mergili [1] and extended it by including the non-hydrostatic con-
tributions. This produces a novel non-hydrostatic multi-phase mass
flow model. Effective normal stresses are constructed for all the solid,
fine-solid and fluid phases in the mixture from the normal stress
components, which include the interfacial momentum transfers such
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as buoyancy, drag and virtual mass forces. Depending on the nature
of the components in the effective normal stresses, the normal loads
are separated into the enhanced gravity and dispersion, which, respec-
tively, correspond to the acceleration in the flow depth direction and
mass fluxes associated with the slope parallel directions. While drag
and virtual mass forces appear in both, buoyancy is present only in
the enhanced gravity for solid and fine-solid because it is associated
with the reduced normal load of the solid particles in the mixture. As
enhanced gravity and dispersion both emerge from the effective normal
load, these enter into the lateral momentum fluxes via the hydraulic
pressure gradients and additionally introducing the dispersion effects.
This resulted in a complex and highly non-linear new contributions in
the momentum fluxes. This may pose a challenge in solving the model
equations. This is mainly due to the involvement of time derivatives
in fluxes that appear in dispersion, and also in the enhanced gravity.
To reduce the complexity, I have also presented some simplifications
and approximations for the time derivatives appearing in the enhanced
non-hydrostatic contributions. Similarly, I have presented analysis of
the dispersion relations showing the role of the drag force. I discussed
some special situations where the non-hydrostatic dispersive effects
are more pronounced in multi-phase particle-fluid mixture mass flows
than in single-phase flows. I proved that negligible dispersion leads to
the generalization of the existing inviscid, dissipative Burgers’ equation
with source term. Simplified models are presented that can help in solv-
ing the equations with reduced complexity. Reduced models already
appeared to be important generalizations and extensions of several
mass flow models available in the literature. I formally postulated a
novel, spatially varying dissipative (or anti-dissipative) force, called
the prime-force. The practitioners and engineers may find the prime-
force very useful in solving technical problems as it precisely controls
the dynamics, run-out and deposition of mass flows. The need of
formally including this new, physically-founded force in momentum
balance equations are elucidated. I constructed a simple dispersion
model and its solution that highlighted the essence of dispersion on
the flow dynamics. I have consistently demonstrated that dispersion
produces a wavy velocity field around the reference state without
dispersion. The results show that dispersion increases strongly as the
solid volume fraction and the basal friction decreases. The explicit
description of dispersive waves and their control by the solid volume
fraction and basal friction are seminal understanding in mass flows. So,
this contribution sets a foundation for a more complete and general
simulation of non-hydrostatic dispersive, multi-phase mass flows.
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Appendix

The expressions and discussions below are mainly based on Puda-
saini and Mergili [1].
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A. The drag coefficients are given by:

A &g (1—y{)g

C;)é - 7 (A.1a)
[v;-f {Porres (Rey )+ (1=Por) o7 (Rey ) b+ 537 ]
s.fs a:afx<1_7sfs>g
CDG - S.fs S.fSPs.fs s.fs s.fs s.fs s.fs s.fs i’
[U‘T {Pu o (Rep >+(1—Pv )G (Rep )}+Sp ]
(A.1b)
f
A aj»saf(l—yfs)g
s f _
CDZ? -

[UTf s/ {P/Svf Fiss (Re,{""f ) +(1=PIsr)grss (Ref“’f )} +S ]j

(A.10)

where, in (A.1a), P*/ € (0, 1) is a function of the solid volume fraction
psl = o, where m is a positive number, close to 1, combines the
fluid-like, 7/ = y/ (af )3 Re;’f /180, and solid-like, ¢/ = aj‘/ o= drag
contributions between solid and fluid components in three-phase mass
flows; U;’f is the terminal velocity of a particle falling through the
fluid, j = 1or2 is selected according to whether linear or quadratic

drag coefficients are used, and M*/ = M*/ (Ref,’f ) depends on the

particle Reynolds number Re;’f = pyd, U‘;’f /ny [8,54]. Furthermore,
d is particle diameter, ysf = ps/p; is the fluid to solid density ratio,
and asf = a/a; is the fluid to solid fraction ratio.

5/ <ﬂ+ 1—ps/

P a, a
function, where K%/ = |a,u, +a ru| is determined by the mixture mass
flux per unit mixture density, typically X%/ = 10 ms~!. The emergence
of S;‘f in (A.la) is crucial for the broad structure of the generalized
drag that removes the singularity from the existing drag coefficients.
With this, (A.1a) is called the enhanced generalized drag in mixture
mass flows. This fully describes the drag for any values of the solid

volume fraction «,. Similar discussions hold for the other drags CZ’Q
Js.f
Coo -

>ICS’f in (A.1a) is called the smoothing

and

B. The virtual mass induced mass and momentum enhancements
for the solid-phase due to fluid and the fine-solid are denoted by u%™
and wu!™, uv?™, and are written as:

ul;m:y{CS'f (uf_ux)_'_ysfsCS,fs (“/g_“s)’ (A.2a)
uu?m — y{CS’f (Lé _ u?) + J/{”scs.fs (ui’s _ uf) , (A.2b)
u" = ystS'f (upv; —uswy) + yA_fSCS’fS (upsvpy —ugvg) . (A.20)

The virtual mass force coefficient C*/ in (A.2) is given by (Puda-
saini, 2019):
_ N Han-1

as/af +ysf

cf (A.3)

where W, is the virtual mass number, and # and » are some numerical
parameters. This model covers any distribution of the dispersive phase
(dilute to dense distribution of the solid particles) that evolves auto-
matically as a function of solid volume fraction. The physically most
relevant values for the parameters can be: N0 = 10, # = 0.12 and
n = 1. The other virtual mass force coefficients C*/* and C/*/ can be
constructed from (A.3). Similarly, the virtual mass force induced mass
and momentum enhancements for the fine-solid and fluid phases are
given by:

om

Ups = yj{scf&f (u/- - ufS) - a;scs‘fx (u/'S - MS) g (A.4a)

uuj”,';' = }’;A,Cfs’f (ui - ui.s) - a}scs’fs (uis — u?) R (A.4b)
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fs = yfsCfsf (ufvf —ufsvfs) —a CSfS ("fs”fs — U0, ) (A.4c)
and
u;m = a}CS’f (uf — us) + txj/:SCfS’f (uf - ufs) ) (A.5a)
"= a}Cs‘f (u? - u?) + a;SCfs'f (u? - ”3“:) s (A.5b)
"= a}Cs’f (upvy —ugg) + aj’:SCfs’f (upvy —upvysg), (A.5¢)
respectively, where, “}x = as/“f:s“} = ay/a; and ol = a;/a, are

the fraction ratios. By consistently replacing u by v in (A.2)-(A.5), we
obtain the virtual mass induced mass and momentum enhancements in
the y-direction.

C. The x-directional fluid-type basal shear stresses in the xz-
plane are given, either by the no-slip condition (for both the fluid, and
fine-solid):

du u du u
f f fs fs
| =4 L L] = AR A.6
[az]b )(ufh [02 ]b Hups h 4.0
or by the no-slip condition for fluid, and the Coulomb-slip condition for
fine-solid:
F
ou u ou du
S f fs Urs cF fs
it 1) IV yocr Zfs (A7)
[az]b Fup T [02] ve It u T

with the Coulomb friction coefficient CF = —u; /|u;|tané,,, where
84 is the basal friction angle for the f1ne solid. The parameters y, and
Xug, in (A.6) and (A.7) model the possible velocity distributions of the
respective phases in the xz-plane normal to the sliding surface.

D. The viscous stresses associated with V;S and v; in (16b)-
(16c) are related to the Newtonian-type viscous stresses. They include
pressure, rate, yield strength and friction, see below.

E. The effective fluid and fine-solid kinematic viscosities are

given by:

TYf
vi=vp+ m [1—exp (=r,IDI)],

(A.8)
Vis = ”D 5 (1= exp (=D )]
where 7, Vs and 7, vy, are the corresponding yield stresses, r, are the
parameters for regularization, and 7, . = singypyg, and, D ; is the

deviatoric strain-rate tensor for fluid. In the viscosities (A.8), the depth-
averaged norm of D/ is obtained as:

w) - (5 - (5

ID,|| is given by the second invariant (Il f) of the deviatoric strain-

1/2

(A.9)

rate tensor for fluid: D /|| = , /lIDf with, Iy, =
The norm of the deviatoric strain-rate tensor for fine-solid, Dy, is

obtained similarly.

Flow and No-flow regions: The yield criteria help to precisely
distinguish the flow and no-flow regions and depend on the rate of
deformation and the material strengths for both the fine-solid and fluid
phases. Both the fine-solid and fluid phases yield plastically if the
measures of the deviatoric stress tensors overcome the strengths of the
materials. See, Pudasaini and Mergili [1] for more details.

F. The x-directional enhanced non-Newtonian viscous stress
contribution (denoted by nN) for fine-solid due to the non-uniform
distribution of the solid particles in the fine-solid is given by:

I AT 9 dag
st _ Py 23 st x (ufs - s)
s

nN

% [tr (Df)2 —tr (Df,)]
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9 dag da
2 (5 (B pm )+ 2 - ) ) }

_ ASSs ¢ abvfs (ufs —us)

e (A.10)

a
fs
Similarly, the enhanced non-Newtonian viscous stress contribution
for fluid due to the non-uniform distribution of the fine-solid and solid
particles in the fluid is given by:

AL 9 oa
2— vf (uf

ay ox ox
0 dag dag
+0y(v <0X( _Us)+0y

asv; (uf - us)

ay h?

AT Pl oa g
+ {2— <v; T (uf—ufs)
da

ay \ox
)

0 dafs
+5( (ax (v —vp) + 5~

AT EpstpsVy (up —ugy)
ap h? ’

fx
nN

500}

Afv‘ ‘J;s

(A.11)
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