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A B S T R A C T

Modeling mass flows is classically based on the hydrostatic, depth-averaged balance equations. However, if
the momentum transfers scale similarly in the slope parallel and the flow depth directions, then the gravity
and the acceleration can have the same order of magnitude effects. This urges for a non-hydrostatic model
formulation. Here, I extend existing single-phase Boussinesq-type gravity wave models by developing a new
non-hydrostatic model for multi-phase mass flows consisting of the solid and fine-solid particles, and viscous
fluid (Pudasaini and Mergili, 2019 [1]). The new model includes enhanced gravity and dispersion effects
taking into account the interfacial momentum transfers due to the multi-phase nature of the mass flow. I
outline the fundamentally new contributions in the non-hydrostatic Boussinesq-type multi-phase gravity waves
emerging from the phase-interactions including buoyancy, drag, virtual mass and Newtonian as well as non-
Newtonian viscous effects. So, this contribution presents a more general, well-structured framework of the
multi-phase flows with enhanced gravity and dispersion effects, setting a foundation for a comprehensive
simulation of such flows. I discuss some particular situations where the non-hydrostatic and dispersive effects
are more pronounced for multi-phase mass flows. Even the reduced models demonstrate the importance of
non-hydrostatic contributions for both the solid and fine-solid particles, and the viscous fluid. Analytical
solutions are presented for some simple situations demonstrating how the new dispersive model can be reduced
to non-dispersive motions, yet largely generalizing the existing non-dispersive models. I postulate a novel,
spatially varying dissipative force, called the prime-force, which physically controls the dynamics, run-out and
the deposition of the mass flow in a precise way. The practitioners and engineers may find this force very
useful in relevant technical applications. This illuminates the need of formally including the prime-force in the
momentum balance equation. A simple dispersion equation is derived. I highlight the essence of dispersion
on the mass flow dynamics. Dispersion consistently produces a wavy velocity field about the reference state
without dispersion. Emergence of such a dispersive wave is the first of this kind for the avalanching debris
mass. It is revealed that the dispersion intensity increases energetically as the solid volume fraction or the
friction decreases.
. Introduction

Natural hazards associated with geophysical mass movements con-
ist of a mixture of granular materials of different sizes of particles
nd the fluid with their respective physical properties. There have been
apid advancements in modeling shallow granular material [2–6] and
article fluid mixture [1,7–9] mass flow modeling. These models are
rimarily based on the hydrostatic pressure assumptions. However, due
o the centrifugal acceleration, the mass flows in curved channels also
nclude some non-hydrostatic contributions to hydraulic pressure gra-
ients and the Coulomb friction forces because of the enhanced normal
oad [10–12]. Furthermore, Pailha and Pouliquen [13], Pudasaini [9]
howed that the pressure in mixture mass flows can be non-hydrostatic
ue to the Newtonian and non-Newtonian viscous contributions, the
article concentration distributions, and the relative velocity between
article and fluid.

E-mail address: shiva.pudasaini@tum.de.

Classically, modeling geophysical flows is usually based on the
hydrostatic, depth-averaged mass and momentum balance equations.
Hydrostatic flow models are based on the assumption that the slope
parallel length scale is much larger than the length scale in the flow
depth direction. However, if the similar length scalings are required in
the slope parallel and the flow depth directions, then the gravity and
the vertical acceleration can have the same order of magnitude effects
[14,15]. This may call for the use of the full (without reducing to the
hydrostatic condition) momentum equation also in the slope normal
direction as in the slope parallel directions. Denlinger and Iverson [14]
mentioned that the vertical accelerations in granular mass flows can
be of the same order of magnitude as the gravity acceleration. In this
situation, the vertical acceleration can be as significant as the acceler-
ation in the slope parallel direction. This is particularly so for steep,
irregular and curved slopes where there is a substantial acceleration of
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the material in the flow depth direction. So, they suggested for the non-
hydrostatic modeling of granular flows. This requires enhancements of
the normal stress (in the slope normal or vertical direction) that results
in the enhancements of the acceleration, friction and fluxes in the
momentum balance equations [15,16]. Since the Coriolis acceleration
is usually neglected in geophysical mass flows (such as landslide and
avalanches), two-types of accelerations can be induced affecting the
normal stress distributions of the free surface flows [15]: First, the
acceleration due to the real forces acting at the bed-normal direction.
Second, the centripetal acceleration that arises due to the curved flow
path [10,12]. The first is the main contributor of the Boussinesq-
type models, while both combined result in the more comprehensive
non-hydrostatic flows.

Following the work of Boussinesq [17,18], the free surface wa-
ter flow simulations are generally based on non-hydrostatic depth-
averaged models. Fundamental further contributions in including
Boussinesq-type non-hydrostatic and dispersive effects in water waves
are also due to Serre [19], Peregrine [20] and Green and Naghdi
[21]. The recent advancements and applications of the dispersive wave
characteristics of the Boussinesq system with sophisticated numerical
schemes for real flow simulations include the works by Nwogu [22],
Wei and Kirby [23], Madsen and Schäffer [24], Kennedy et al. [25],
Stansby [26], Chen et al. [27], Erduran et al. [28], and Kim and Lynett
[29]. For detailed review on it, I refer to Castro-Orgaz et al. [15].
However, the effect of nonzero vertical acceleration on depth-averaged
momentum fluxes and stress states were first included by Denlinger and
Iverson [14] while modeling shallow granular flows across irregular
terrains. This was later extended by Castro-Orgaz et al. [15] resulting
in the novel Boussinesq-type theory for granular flows. Castro-Orgaz
et al. [15] rigorously developed a non-hydrostatic depth-averaged
granular flow model. Considering the vertical motion of particles, they
explicitly determined the vertical velocity, vertical acceleration, and
vertical normal stresses from the mass and momentum conservation
equations. They have shown that granular mass flow can be described
by fully non-linear, Boussinesq-type gravity waves, generalizing the
basic Boussinesq-type water wave theory used in civil and coastal
engineering to granular mass flows. Subsequently, Yuan et al. [16]
advanced further by presenting a more complete non-hydrostatic shal-
low granular flow model. They also cast their model in to a usual
Boussinesq-type water wave equations.

In developing the non-hydrostatic Boussinesq-type gravity wave
models for granular flows, both Castro-Orgaz et al. [15] and Yuan
et al. [16] considered the vertical momentum equation, assuming the
shallowness of the flow depth and the constant velocity profiles of
the horizontal velocity components. Along with these assumptions,
there are three key aspects in their model development: Obtaining
the vertical normal stress component from the vertical momentum
equation, an expression for the vertical velocity component in terms of
the horizontal mass flux (divergence), and the definition of the depth
integration of the vertical velocity component from a generic elevation
to the free surface. Finally, the depth averaged mass and momentum
equations, together with these three considerations lead to a non-
hydrostatic Boussinesq-type gravity wave models for granular flows.
However, all these formulations are primarily based on the global
horizontal–vertical Cartesian coordinate for a single-phase granular
flows.

One- and two-phase models cannot appropriately represent many
important aspects of very complex mass flows in terms of material com-
position and interactions among the involved phases. The rheological
properties and flow dynamics are governed by coarse and fine solids,
and viscous fluid, i.e., typically three phases [7,30–33]. Consequently,
the most complex model family for geophysical mass flows should aim
at describing the flow as (typically) a three-phase mixture, as often
observed in the field and experiments [32,34–37]. In general terms,
the mechanically distinct components in the mixture mass flow can
be divided into three constituents: The fluid phase is a mixture of
2

water and very fine particles (clay, silt, colloids), the fine-solid phase
consists of sand and particles larger than clay and silt, and the solid
phase represents the coarse material. These materials can be described
as viscoplastic, Coulomb-viscoplastic, and Mohr–Coulomb continuum.
With this, Pudasaini and Mergili [1] proposed a novel multi-phase,
multi-mechanical mass flow model, by extending the two-phase viscous
fluid and Coulomb solid model [9] to additionally combine it with the
fine-solid material. The Pudasaini and Mergili [1] model can accurately
simulate complex cascading multi-phase natural events [38–40].

Here, I extend and utilize the above mentioned ideas to the multi-
phase mass flow model [1] to generate a new non-hydrostatic
Boussinesq-type gravity wave model for multi-phase mass flows in
a locally inclined Cartesian coordinate system [8,9]. The new non-
hydrostatic multi-phase mass flow model includes enhanced gravity
and dispersion effects as in the single-phase models by Denlinger and
Iverson [14], Castro-Orgaz et al. [15] and Yuan et al. [16]. But, our
new model further includes interfacial momentum transfers in the
non-hydrostatic Boussinesq-type model formulation representing the
complex multi-phase nature of the mass flow. I delineate the fundamen-
tally new contributions in the Boussinesq-type gravity waves in mass
flows emerging from the phase-interactions. This includes buoyancy,
drag, virtual mass and Newtonian plus non-Newtonian viscous effects. I
outline the first-ever application potential of the dispersive multi-phase
mass flows. As in the effective gravity, the dispersive terms are strongly
coupled, e.g., due to the interfacial drag and virtual mass contributions.
There are direct and strong couplings between the solid, fine-solid and
the fluid components among these dispersion relations. Interfacial drags
bring completely new mechanisms in the non-hydrostatic, dispersion
relations. I discuss some particular situations where the non-hydrostatic
dispersive effects are more pronounced in multi-phase particle–fluid
mixture mass flows than in single-phase flows. So, this contribution
sets a foundation for a more comprehensive and general frame for the
simulation of dispersive, multi-phase mass flows. Simplified models
are presented that might be helpful in solving the equations with
reduced complexity. The reduced models already appeared to be the
important generalizations and extensions of some mass flow models
available in the literature. I formally postulate a new, spatially varying
dissipative force, called the prime-force, which can physically precisely
control the mass flow dynamics, run-out and deposition. I present
a simple dispersion model and its solution. Dispersion produces a
wavy velocity field about the reference state without dispersion. The
dispersion increases greatly as the solid volume fraction or the basal
friction decreases. These are new understandings for the motion of a
dispersive landslide.

2. Construction of the model

2.1. Non-hydrostatic contributions

Following Pudasaini and Mergili [1] and Pudasaini and Fischer
[41], first, let us define the variables and parameters. Let the solid, fine-
solid and fluid phases be denoted by the suffices 𝑠, 𝑓𝑠, 𝑓 , respectively.
The fluid phase is governed by its true density 𝜌𝑓 , viscosity 𝜂𝑓 , and
sotropic stress distribution; the fine-solid and solid phases are char-
cterized by their true densities 𝜌𝑓𝑠, 𝜌𝑠; internal friction angles 𝜙𝑓𝑠,

𝜙𝑠; basal friction angles 𝛿𝑓𝑠, 𝛿𝑠; and anisotropic stress distribution, 𝐾𝑠
(lateral earth pressure coefficient); and the viscosity of the fine-solid
𝜂𝑓𝑠. Furthermore, 𝛾𝑓𝑠 = 𝜌𝑓∕𝜌𝑠, 𝛾𝑓𝑠𝑠 = 𝜌𝑓𝑠∕𝜌𝑠, 𝛾𝑓𝑓𝑠 = 𝜌𝑓∕𝜌𝑓𝑠 are the
luid to solid, fine-solid to solid and fluid to fine-solid density ratios,
𝑒
𝑓 and 𝜈𝑒𝑓𝑠 are the effective kinematic viscosities for the fluid and fine-
olid, 𝜇𝑠 = tan 𝛿𝑠 and 𝜇𝑓𝑠 = tan 𝛿𝑓𝑠 are the friction coefficients for
he solid and fine-solid. Let 𝐮𝑠 =

(

𝑢𝑠, 𝑣𝑠, 𝑤𝑠
)

, 𝐮𝑓𝑠 =
(

𝑢𝑓𝑠, 𝑣𝑓𝑠, 𝑤𝑓𝑠
)

,
𝐮𝑓 =

(

𝑢𝑓 , 𝑣𝑓 , 𝑤𝑓
)

, and 𝛼𝑠, 𝛼𝑓𝑠, 𝛼𝑓 denote the velocities with their
components along the flow directions (𝑥, 𝑦, 𝑧), and the volume fractions
for the solid, fine-solid, and fluid constituents. Similarly, 𝑝𝑓𝑠 and 𝑝𝑓 are

the pressures, 𝐶𝐷𝐺 and 𝐶𝑣𝑚 constitute the interfacial force densities,
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namely, the drags and the virtual mass forces, and 𝐶𝐷𝑉 are the viscous
drag coefficients. The superscript-pair represents the considered phases,
e.g., 𝐶𝑠,𝑓

𝐷𝐺 means the drag force exerted by fluid on solid,  are the
virtual mass coefficients, 𝑇∗∗ are the components of the Cauchy stress
tensor, 𝑗 = 1 or 2 correspond to linear or quadratic drag coefficients,
𝑔𝑥, 𝑔𝑦, 𝑔𝑧 are the components of gravitational acceleration, basal- and
the free-surface of the flow are denoted by 𝑏 = 𝑏(𝑡, 𝑥, 𝑦) and 𝑠 = 𝑠(𝑡, 𝑥, 𝑦),
and ℎ = 𝑠 − 𝑏 is the flow depth.

2.1.1. Derivation of normal stress components
The non-hydrostatic modeling framework includes two important

and essential components: (𝑖) enhanced gravity, and (𝑖𝑖) dispersive
contributions (see, e.g., [15,16]). Both emerge from the consideration
of the momentum equation in the flow depth direction such that the
normal component of the velocity is retained, that was neglected in
simple hydrostatic model developments as discussed at Section 1. These
contributions, however, are modeled in terms of the slope parallel
velocity gradients or fluxes. For this, following Pudasaini [9], and
Pudasaini and Mergili [1], first consider the solid momentum balance
in the flow depth direction:

𝜕
𝜕𝑡

(

𝑤𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝑤𝑓 −𝑤𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝑤𝑓𝑠 −𝑤𝑠
))

+ 𝜕
𝜕𝑥

(

𝑢𝑠𝑤𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝑢𝑓𝑤𝑓 − 𝑢𝑠𝑤𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝑢𝑓𝑠𝑤𝑓𝑠 − 𝑢𝑠𝑤𝑠
))

+ 𝜕
𝜕𝑦

(

𝑣𝑠𝑤𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝑣𝑓𝑤𝑓 − 𝑣𝑠𝑤𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝑣𝑓𝑠𝑤𝑓𝑠 − 𝑣𝑠𝑤𝑠
))

+ 𝜕
𝜕𝑧

(

𝑤2
𝑠 − 𝛾𝑓𝑠 

𝑠,𝑓
(

𝑤2
𝑓 −𝑤2

𝑠

)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠
(

𝑤2
𝑓𝑠 −𝑤2

𝑠

))

= −
(

1 − 𝛾𝑓𝑠
)

𝑔𝑧 −
(

𝜇𝑠
𝜕𝑇𝑧𝑥𝑠
𝜕𝑥

+ 𝜇𝑠
𝜕𝑇𝑧𝑦𝑠
𝜕𝑦

+
𝜕𝑇𝑧𝑧𝑠
𝜕𝑧

)

+ 1
𝛼𝑠

[

𝐶𝑠,𝑓
𝐷𝐺

(

𝑤𝑓 −𝑤𝑠
)

|𝐮𝑓 − 𝐮𝑠|𝑗−1

+ 𝐶𝑠,𝑓𝑠
𝐷𝐺

(

𝑤𝑓𝑠 −𝑤𝑠
)

|𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1 − 𝐶𝑠
𝐷𝑉 𝑤𝑠|𝐮𝑠|𝛼𝑠

]

, (1)

where, for simplicity, 𝛼𝑠 has been taken out. Note that since both 𝐶𝑠,𝑓
𝐷𝐺

and 𝐶𝑠,𝑓𝑠
𝐷𝐺 contain 𝛼𝑠 in their numerators (see, Appendix), appearance of

1∕𝛼𝑠 in (1) makes no problem. It is important to note that (1) contains
the normal stress 𝑇𝑧𝑧𝑠 from which we can construct the full description
of the normal stress in the flow depth direction that includes all the
essential components emerging from the flow dynamics and interfacial
momentum transfers in excess to the usual hydrostatic normal load that
is simply associated with the gravity load in the flow depth direction.

First, define a new variable 𝜂 = 𝑧− 𝑏, the relative flow depth. Then,
following the procedure in Castro-Orgaz et al. [15] and Yuan et al.
[16], integrating (1) from the generic elevation 𝑧 to the free surface
𝑠, neglecting the shear stresses, and using the tractionless condition at
the free surface [1,9], we obtain an expression for the normal stress in
terms of 𝜂:

𝜏𝑧𝑧𝑠 (𝜂) =
(

1 − 𝛾𝑓𝑠
)

𝑔𝑧(ℎ − 𝜂)

+ 𝜕
𝜕𝑡

[

𝐼𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝐼𝑓 − 𝐼𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝐼𝑓𝑠 − 𝐼𝑠
)]

+∇ ⋅
[

𝐼𝑠𝐮𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝐼𝑓𝐮𝑓 − 𝐼𝑠𝐮𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝐼𝑓𝑠𝐮𝑓𝑠 − 𝐼𝑠𝐮𝑠
)]

−
[

𝑤2
𝑠 − 𝛾𝑓𝑠 

𝑠,𝑓
(

𝑤2
𝑓 −𝑤2

𝑠

)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠
(

𝑤2
𝑓𝑠 −𝑤2

𝑠

)]

− 1
𝛼𝑠

[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

[

𝐼𝑓 − 𝐼𝑠
]

+𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

[

𝐼𝑓𝑠 − 𝐼𝑠
]

− 𝐶𝑠
𝐷𝑉 𝑤𝑠|𝐮𝑠|𝛼𝑠𝐼𝑠

]

,

(2)
 f

3

where

𝐼𝑠 = ∫

𝑠

𝑧
𝑤𝑠𝑑𝑧

′, 𝐼𝑓𝑠 = ∫

𝑠

𝑧
𝑤𝑓𝑠𝑑𝑧

′, 𝐼𝑓 = ∫

𝑠

𝑧
𝑤𝑓𝑑𝑧

′;

𝑤𝑠 = 𝑤𝑏𝑠 −
(

∇ ⋅ 𝐮𝑠
)

𝜂, 𝑤𝑓𝑠 = 𝑤𝑏𝑓𝑠 −
(

∇ ⋅ 𝐮𝑓𝑠
)

𝜂,

𝑤𝑓 = 𝑤𝑏𝑓 −
(

∇ ⋅ 𝐮𝑓
)

𝜂;

∇ ⋅ 𝐮𝑠 = 𝜕𝑢𝑠∕𝜕𝑥 + 𝜕𝑣𝑠∕𝜕𝑦, ∇ ⋅ 𝐮𝑓𝑠 = 𝜕𝑢𝑓𝑠∕𝜕𝑥 + 𝜕𝑣𝑓𝑠∕𝜕𝑦,

∇ ⋅ 𝐮𝑓 = 𝜕𝑢𝑓∕𝜕𝑥 + 𝜕𝑣𝑓∕𝜕𝑦.

(3)

Now, depth-integrate 𝑤𝑠, and define 𝐼𝑠 (similar structures hold for
fine-solid and fluid):

𝑤̄𝑠 ∶=
1
ℎ ∫

𝑠

𝑏
𝑤𝑠𝑑𝑧

′ = 𝑤𝑏𝑠 −
(

∇ ⋅ 𝐮𝑠
) ℎ
2
, 𝑤𝑏𝑠 = 𝑢𝑠

𝜕𝑏
𝜕𝑥

+ 𝑣𝑠
𝜕𝑏
𝜕𝑦

;

𝑠̂ ∶= ∫

𝑧

𝑏
𝑤𝑠𝑑𝑧

′ = ∫

𝑠

𝑏
𝑤𝑠𝑑𝑧

′ − ∫

𝑠

𝑧
𝑤𝑠𝑑𝑧

′ = ℎ𝑤̄𝑠 − 𝐼𝑠,

(4)

here 𝑏 is the basal topography. Eqs. (2)–(4) constitute the fundamen-
al basis for the non-hydrostatic dispersive model development. With
4), (2) takes the form:

𝑧𝑧𝑠 (𝜂) =
(

1 − 𝛾𝑓𝑠
)

𝑔𝑧(ℎ − 𝜂)

+ℎ 𝜕
𝜕𝑡

[

𝑤̄𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝑤̄𝑓 − 𝑤̄𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝑤̄𝑓𝑠 − 𝑤̄𝑠
)]

+ℎ
[

𝐮𝑠 ⋅ ∇𝑤̄𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝐮𝑓 ⋅ ∇𝑤̄𝑓 − 𝐮𝑠 ⋅ ∇𝑤̄𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝐮𝑓𝑠 ⋅ ∇𝑤̄𝑓𝑠 − 𝐮𝑠 ⋅ ∇𝑤̄𝑠
)]

− 𝜕
𝜕𝑡

[

𝐼𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝐼𝑓 − 𝐼𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝐼𝑓𝑠 − 𝐼𝑠
)]

−∇ ⋅
[

𝐼𝑠𝐮𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝐼𝑓𝐮𝑓 − 𝐼𝑠𝐮𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝐼𝑓𝑠𝐮𝑓𝑠 − 𝐼𝑠𝐮𝑠
)]

−
[

𝑤2
𝑠 − 𝛾𝑓𝑠 

𝑠,𝑓
(

𝑤2
𝑓 −𝑤2

𝑠

)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠
(

𝑤2
𝑓𝑠 −𝑤2

𝑠

)]

− 1
𝛼𝑠

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

[(

ℎ𝑤̄𝑓 − 𝐼𝑓
)

−
(

ℎ𝑤̄𝑠 − 𝐼𝑠
)]

− 1
𝛼𝑠

𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

[(

ℎ𝑤̄𝑓𝑠 − 𝐼𝑓𝑠
)

−
(

ℎ𝑤̄𝑠 − 𝐼𝑠
)]

+𝐶𝑠
𝐷𝑉

[(

ℎ𝑤̄𝑠 − 𝐼𝑠
)]

|𝐮𝑠|. (5)

In this representation, the first term on the right hand side contains
he complementary relative flow depth, (ℎ − 𝜂), and indicates that at
he bottom (𝜂 = 0) it is

(

1 − 𝛾𝑓𝑠
)

𝑔𝑧ℎ, and at the free surface (𝜂 = ℎ) it
s zero. So, that term is the usual hydrostatic normal load often used
n shallow flow models together with the buoyancy effect

(

1 − 𝛾𝑓𝑠
)

.

hus, the appearance of (ℎ − 𝜂) in
(

1 − 𝛾𝑓𝑠
)

𝑔𝑧(ℎ − 𝜂) implies its linear
istribution from the bottom to the free surface, it is advantageous.
herefore, we should also try to transfer the other terms in (5) to some
tructures such that they contain some functions of (ℎ − 𝜂) and/or 𝜂.
his will be achieved next.

With its definition in (4), 𝐼𝑠 (similar for fine-solid and fluid) can be
btained from (3) as:

𝑠̂ = 𝑤𝑏𝑠𝜂 −
(

∇ ⋅ 𝐮𝑠
) 𝜂2

2
. (6)

As we will see below, this helps in producing desired terms with
factors ℎ − 𝜂 and/or 𝜂.

.1.2. Effective normal loads
A. The solid normal load: Now, define 𝐷∕𝐷𝑡 = 𝜕∕𝜕𝑡+𝐮𝑠 ⋅∇ (similar

or fine-solid and fluid). Then, with (6), following the procedures as in
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Yuan et al. [16], after a lengthy calculations, (5) takes the form:

𝜏𝑧𝑧𝑠 =
(

1 − 𝛾𝑓𝑠
)

𝑔𝑧(ℎ − 𝜂)

+ 𝐷
𝐷𝑡

[

𝑤̄𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (𝑤̄𝑓 − 𝑤̄𝑠

)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝑤̄𝑓𝑠 − 𝑤̄𝑠
)]

(ℎ − 𝜂)

− 1
2

{

𝐷
𝐷𝑡

[

ℎ∇ ⋅ 𝐮𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (ℎ∇ ⋅ 𝐮𝑓 − ℎ∇ ⋅ 𝐮𝑠

)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (ℎ∇ ⋅ 𝐮𝑓𝑠 − ℎ∇ ⋅ 𝐮𝑠
)]

𝜂

− 𝐷
𝐷𝑡

[

∇ ⋅ 𝐮𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (∇ ⋅ 𝐮𝑓 − ∇ ⋅ 𝐮𝑠

)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (∇ ⋅ 𝐮𝑓𝑠 − ∇ ⋅ 𝐮𝑠
)]

𝜂2

+
[

(

∇ ⋅ 𝐮𝑠
)2 − 𝛾𝑓𝑠 

𝑠,𝑓
(

(

∇ ⋅ 𝐮𝑓
)2 −

(

∇ ⋅ 𝐮𝑠
)2
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠
(

(

∇ ⋅ 𝐮𝑓𝑠
)2 −

(

∇ ⋅ 𝐮𝑠
)2
)]

𝜂2
}

− 1
𝛼𝑠

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

[

(

𝑤̄𝑓 − 𝑤̄𝑠
)

(ℎ − 𝜂) −
(

∇ ⋅
(

𝐮𝑓 − 𝐮𝑠
)) 1

2
𝜂 (ℎ − 𝜂)

]

− 1
𝛼𝑠

𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠−𝐮𝑠|𝑗−1

×
[

(

𝑤̄𝑓𝑠 − 𝑤̄𝑠
)

(ℎ − 𝜂) −
(

∇ ⋅
(

𝐮𝑓𝑠 − 𝐮𝑠
)) 1

2
𝜂 (ℎ − 𝜂)

]

+ 𝐶𝑠
𝐷𝑉 |𝐮𝑠|

[

𝑤̄𝑠 (ℎ − 𝜂) −
(

∇ ⋅ 𝐮𝑠
) 1
2
𝜂 (ℎ − 𝜂)

]

, (7)

which is the effective normal load for the solid component. Note that
(4) and (6) are utilized to obtain the structures associated with the
drags. 𝜏𝑧𝑧𝑠 in (7) is written entirely in terms of the flow variables, flow
dynamics and the phase-interaction terms. There are two types of terms
in (7). First, the slope normal acceleration terms associated with (ℎ−𝜂),

hich are linear in 𝜂. Second, the slope parallel (divergence, or flux)
erms that are either linear or quadratic in 𝜂. However, it is interesting
o note that the interfacial drag contributions have two types of terms.
𝑖) In 𝐶𝑠,𝑓

𝐷𝐺, the associated term
(

𝑤̄𝑓 − 𝑤̄𝑠
)

(ℎ − 𝜂) has a factor (ℎ − 𝜂) as
n the usual gravity and the acceleration terms (𝑔𝑧 and 𝐷∕𝐷𝑡). This term
anishes at the free surface. (𝑖𝑖)

(

∇ ⋅
(

𝐮𝑓 − 𝐮𝑠
)) 1

2 𝜂 (ℎ − 𝜂) is quadratic
in 𝜂, but has a special form. Such term with factor 𝜂 (ℎ − 𝜂) does not
appear in other contributions in 𝜏𝑧𝑧𝑠 . This vanishes both at the bottom
and at the free surface of the flow and thus has maximum in between
the flow depth. Similar analysis holds for the terms associated with
𝐶𝑠,𝑓𝑠
𝐷𝐺 . So, the interfacial drags bring completely new mechanisms in the

non-hydrostatic (dispersion) relations. The important point now is that,
due to their structures, the first terms in the drag contributions must be
(or better to) put together with the gravity and the acceleration terms,
𝑔𝑧 and 𝐷∕𝐷𝑡 (associated with 𝑤̄). I consider these terms together in
obtaining the enhanced gravity. Furthermore, the 𝐷∕𝐷𝑡 are due to the
normal acceleration of the solid particles, and the relative acceleration
of the solid particles with respect to the fine-solid and fluid. So, all
𝑔𝑧, 𝐷∕𝐷𝑡 and 𝐶𝐷𝐺 terms (associated with (ℎ − 𝜂)) basically represent
he normal acceleration, or force. All the other remaining terms in (7)
epresent the dynamics and forcings in the slope parallel direction. For
his reason, I re-write (7) as the first group of terms with the factor (ℎ−
), containing the usual gravity (including buoyancy,

(

1 − 𝛾𝑓𝑠
)

𝑔𝑧), and
he normal acceleration (𝐷∕𝐷𝑡 terms including virtual mass) and drag
erms (𝐶𝐷𝐺), and the second group of terms with 𝜂 and 𝜂2 representing
he slope parallel motion as:

𝑧𝑧𝑠 =
(

1 − 𝛾𝑓𝑠
)

𝑔𝑧(ℎ − 𝜂)

+ 𝐷
𝐷𝑡

[

𝑤̄𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (𝑤̄𝑓 − 𝑤̄𝑠

)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝑤̄𝑓𝑠 − 𝑤̄𝑠
)]

(ℎ − 𝜂)

− 1
𝛼𝑠

[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑤̄𝑓 − 𝑤̄𝑠
)

+𝐶𝑠,𝑓𝑠
|𝐮 − 𝐮 |

𝑗−1 (𝑤̄ − 𝑤̄
)

− 𝐶𝑠 𝑤̄ |𝐮 |𝛼
]

(ℎ − 𝜂) ,
𝐷𝐺 𝑓𝑠 𝑠 𝑓𝑠 𝑠 𝐷𝑉 𝑠 𝑠 𝑠

4

−1
2

{

𝐷
𝐷𝑡

[

ℎ∇ ⋅ 𝐮𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (ℎ∇ ⋅ 𝐮𝑓 − ℎ∇ ⋅ 𝐮𝑠

)

−𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (ℎ∇ ⋅ 𝐮𝑓𝑠 − ℎ∇ ⋅ 𝐮𝑠
)]

𝜂

− 𝐷
𝐷𝑡

[

∇ ⋅ 𝐮𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (∇ ⋅ 𝐮𝑓 − ∇ ⋅ 𝐮𝑠

)

−𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (∇ ⋅ 𝐮𝑓𝑠 − ∇ ⋅ 𝐮𝑠
)]

𝜂2

+
[

(

∇ ⋅ 𝐮𝑠
)2 − 𝛾𝑓𝑠 

𝑠,𝑓
(

(

∇ ⋅ 𝐮𝑓
)2 −

(

∇ ⋅ 𝐮𝑠
)2
)

−𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠
(

(

∇ ⋅ 𝐮𝑓𝑠
)2 −

(

∇ ⋅ 𝐮𝑠
)2
)]

𝜂2
}

+ 1
𝛼𝑠

[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓−𝐮𝑠|

𝑗−1 (∇ ⋅
(

𝐮𝑓−𝐮𝑠
))

+𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠−𝐮𝑠|𝑗−1

(

∇ ⋅
(

𝐮𝑓𝑠−𝐮𝑠
))

−𝐶𝑠
𝐷𝑉 |𝐮𝑠|

(

∇ ⋅ 𝐮𝑠
)

𝛼𝑠
] 1
2
𝜂 (ℎ−𝜂) .

(8)

So, it is legitimate to call the first group of terms (with factor ℎ− 𝜂)
he enhanced gravity, and the second group of terms (with factors 𝜂, 𝜂2
nd 𝜂(ℎ − 𝜂)) the dispersion. Together, they constitute the (effective)
on-hydrostatic normal load. This has been discussed in more detail
ater in Sections 2.1.3 and 2.1.4. In (8), the components in the drag
erms have been split in to normal and slope parallel-type components
ontributing to the enhanced gravity and dispersion relations.

To apply the normal loads in a depth-averaged formulation, we need
o depth-average 𝜏𝑧𝑧𝑠 in (8). For this, first define the phase-divergence
n slope parallel directions as: 𝑈𝑠 = ∇ ⋅ 𝐮𝑠, 𝑈𝑓𝑠 = ∇ ⋅ 𝐮𝑓𝑠, 𝑈𝑓 = ∇ ⋅ 𝐮𝑓 ,
hen, following Yuan et al. [16], integrate (8) through the flow depth
o obtain its mean:

̄𝑧𝑧𝑠 =
(

1 − 𝛾𝑓𝑠
)

𝑔𝑧 1
2
ℎ2

+ 𝐷
𝐷𝑡

[

𝑤̄𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝑤̄𝑓 − 𝑤̄𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝑤̄𝑓𝑠 − 𝑤̄𝑠
)] 1

2
ℎ2

− 1
𝛼𝑠

ℎ2

2

[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑤̄𝑓 − 𝑤̄𝑠
)

+𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑤̄𝑓𝑠 − 𝑤̄𝑠
)

− 𝐶𝑠
𝐷𝑉 𝑤̄𝑠|𝐮𝑠|𝛼𝑠

]

+ ℎ3

12

[(

𝑈2
𝑠 − 𝛾𝑓𝑠 

𝑠,𝑓
(

𝑈2
𝑓 − 𝑈2

𝑠

)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠
(

𝑈2
𝑓𝑠 − 𝑈2

𝑠

))

− 𝐷
𝐷𝑡

(

𝑈𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝑈𝑓 − 𝑈𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝑈𝑓𝑠 − 𝑈𝑠
))

]

+ 1
𝛼𝑠

ℎ3

6

[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑈𝑓 − 𝑈𝑠
)

+𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑈𝑓𝑠 − 𝑈𝑠
)

− 𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠𝛼𝑠

]

, (9)

hich is the depth averaged effective solid normal load.
B. The fine-solid and fluid normal loads: As in (1), I consider

he normal components of the fine-solid and fluid momentum equa-
ions [1,9]. Then, following the procedure from (2) to (9), I obtain
epth-averaged normal stresses for fine-solid and fluid, respectively:

𝜏𝑧𝑧𝑓𝑠 = 𝛾𝑓𝑓𝑠𝑔
𝑧 1
2
ℎ2

+ 𝐷
𝐷𝑡

[

𝑤̄𝑓𝑠 − 𝛾𝑓𝑓𝑠
𝑓𝑠,𝑓 (

𝑤̄𝑓 − 𝑤̄𝑓𝑠
)

+ 𝛼𝑠𝑓𝑠
𝑠,𝑓𝑠 (𝑤̄𝑓𝑠 − 𝑤̄𝑠

)

] 1
2
ℎ2

− 1
𝛼𝑓𝑠

ℎ2

2

[

− 1
𝛾𝑓𝑠𝑠

𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑤̄𝑓𝑠 − 𝑤̄𝑠
)

+𝐶𝑓𝑠,𝑓
𝐷𝐺 |𝐮𝑓 − 𝐮𝑓𝑠|𝑗−1

(

𝑤̄𝑓 − 𝑤̄𝑓𝑠
)

− 𝐶𝑓𝑠
𝐷𝑉 𝑤̄𝑓𝑠|𝐮𝑓𝑠|𝛼𝑓𝑠

]

+ℎ3 [(

𝑈2 − 𝛾𝑓 𝑓𝑠,𝑓
(

𝑈2 − 𝑈2
)

+ 𝛼𝑠 𝑠,𝑓𝑠
(

𝑈2 − 𝑈2
))
12 𝑓𝑠 𝑓𝑠 𝑓 𝑓𝑠 𝑓𝑠 𝑓𝑠 𝑠
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

− 𝐷
𝐷𝑡

(

𝑈𝑓𝑠 − 𝛾𝑓𝑓𝑠
𝑓𝑠,𝑓 (

𝑈𝑓 − 𝑈𝑓𝑠
)

+ 𝛼𝑠𝑓𝑠
𝑠,𝑓𝑠 (𝑈𝑓𝑠 − 𝑈𝑠

)

)]

+ 1
𝛼𝑓𝑠

ℎ3

6

[

− 1
𝛾𝑓𝑠𝑠

𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑈𝑓𝑠 − 𝑈𝑠
)

+𝐶𝑓𝑠,𝑓
𝐷𝐺 |𝐮𝑓 − 𝐮𝑓𝑠|𝑗−1

(

𝑈𝑓 − 𝑈𝑓𝑠
)

− 𝐶𝑓𝑠
𝐷𝑉 |𝐮𝑓𝑠|𝑈𝑓𝑠𝛼𝑓𝑠

]

, (10)

̄𝑧𝑧𝑓 = 𝑔𝑧 1
2
ℎ2 + 𝐷

𝐷𝑡

[

𝑤̄𝑓 + 𝛼𝑠
𝑓

𝑠,𝑓 (𝑤̄𝑓 − 𝑤̄𝑠
)

+ 𝛼𝑓𝑠
𝑓 𝑓𝑠,𝑓 (𝑤̄𝑓 − 𝑤̄𝑓𝑠

)

] 1
2
ℎ2

+ 1
𝛼𝑓

ℎ2

2

[

1
𝛾𝑓𝑠

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑤̄𝑓 − 𝑤̄𝑠
)

+ 1
𝛾𝑓𝑓𝑠

𝐶𝑓𝑠,𝑓
𝐷𝐺 |𝐮𝑓 − 𝐮𝑓𝑠|𝑗−1

(

𝑤̄𝑓 − 𝑤̄𝑓𝑠
)

+ 𝐶𝑓
𝐷𝑉 𝑤̄𝑓 |𝐮𝑓 |𝛼𝑓

]

+ ℎ3

12

[(

𝑈 2
𝑓 + 𝛼𝑠

𝑓
𝑠,𝑓

(

𝑈 2
𝑓 − 𝑈 2

𝑠

)

+ 𝛼𝑓𝑠
𝑓 𝑓𝑠,𝑓

(

𝑈 2
𝑓 − 𝑈 2

𝑓𝑠

))

− 𝐷
𝐷𝑡

(

𝑈𝑓 + 𝛼𝑠
𝑓

𝑠,𝑓 (𝑈𝑓 − 𝑈𝑠
)

+ 𝛼𝑓𝑠
𝑓 𝑓𝑠,𝑓 (𝑈𝑓 − 𝑈𝑓𝑠

)

)]

− 1
𝛼𝑓

ℎ3

6

[

1
𝛾𝑓𝑠

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑈𝑓 − 𝑈𝑠
)

+ 1
𝛾𝑓𝑓𝑠

𝐶𝑓𝑠,𝑓
𝐷𝐺 |𝐮𝑓 − 𝐮𝑓𝑠|𝑗−1

(

𝑈𝑓 − 𝑈𝑓𝑠
)

+ 𝐶𝑓
𝐷𝑉 |𝐮𝑓 |𝑈𝑓𝛼𝑓

]

.

(11)

The first terms on the right hand sides in (9)–(11) show the distinct
scalings for the solid, fine-solid, and fluid-phases in the three-phase
mixture flow. The solid and fine-solid pressures are reduced due to
respective buoyancies by the factors

(

1 − 𝛾𝑓𝑠
)

and 𝛾𝑓𝑓𝑠. The buoyancy

reduced normal load of the solid particles,
(

1 − 𝛾𝑓𝑠
)

, is due to the fluid
composed of water and very fine particles and the fine-solids, and thus
𝛾𝑓𝑠 is the corresponding mixture fluid density normalized by the solid
density. Similar statement holds for fine-solid. For more detail on this,
see Pudasaini and Mergili [1].

The mean values of the normal components of stresses are required
to obtain the lateral (slope parallel) stress components, which for solid,
fine-solid and fluid phases are given by: 𝛼𝑠𝜏𝑥𝑥𝑠 = 𝛼𝑠𝐾𝑥

𝑠 𝜏𝑧𝑧𝑠 , 𝛼𝑓𝑠𝜏𝑥𝑥𝑓𝑠 =
𝛼𝑓𝑠𝜏𝑧𝑧𝑓𝑠 , 𝛼𝑓 𝜏𝑥𝑥𝑓 = 𝛼𝑓 𝜏𝑧𝑧𝑓 , where only the solid-phase contains the
earth pressure coefficient 𝐾𝑥

𝑠 due to its Coulomb frictional behavior
[1,9]. These lateral stresses enter the momentum balance equations as
the sum of the enhanced hydraulic pressure gradients and dispersion
relations. This is discussed later.

2.1.3. Enhanced (effective) gravities
From (7), or (9), (and similarly from (10) and (11)), I extract the

enhanced (effective) gravity for solid, fine-solid and fluid components,
respectively

𝑔́𝑧𝑠 =
(

1 − 𝛾𝑓𝑠
)

𝑔𝑧 + 𝐷
𝐷𝑡

[

𝑤̄𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝑤̄𝑓 − 𝑤̄𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝑤̄𝑓𝑠 − 𝑤̄𝑠
)]

− 1
𝛼𝑠

[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑤̄𝑓 − 𝑤̄𝑠
)

+𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑤̄𝑓𝑠 − 𝑤̄𝑠
)

− 𝐶𝑠
𝐷𝑉 𝑤̄𝑠|𝐮𝑠|𝛼𝑠

]

,

𝑔́𝑧𝑓𝑠 = 𝛾𝑓𝑓𝑠𝑔
𝑧 + 𝐷

𝐷𝑡

[

𝑤̄𝑓𝑠 − 𝛾𝑓𝑓𝑠
𝑓𝑠,𝑓 (

𝑤̄𝑓 − 𝑤̄𝑓𝑠
)

+ 𝛼𝑠𝑓𝑠
𝑠,𝑓𝑠 (𝑤̄𝑓𝑠 − 𝑤̄𝑠

)

]

− 1
𝛼𝑓𝑠

[

− 1
𝛾𝑓𝑠𝑠

𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑤̄𝑓𝑠 − 𝑤̄𝑠
)

+𝐶𝑓𝑠,𝑓
𝐷𝐺 |𝐮𝑓 − 𝐮𝑓𝑠|𝑗−1

(

𝑤̄𝑓 − 𝑤̄𝑓𝑠
)

− 𝐶𝑓𝑠
𝐷𝑉 𝑤̄𝑓𝑠|𝐮𝑓𝑠|𝛼𝑓𝑠

]

,

𝑔́𝑧 = 𝑔𝑧 + 𝐷 [

𝑤̄ + 𝛼𝑠 𝑠,𝑓 (

𝑤̄ − 𝑤̄
)

+ 𝛼𝑓𝑠𝑓𝑠,𝑓 (

𝑤̄ − 𝑤̄
)

]

𝑓 𝐷𝑡 𝑓 𝑓 𝑓 𝑠 𝑓 𝑓 𝑓𝑠

5

+ 1
𝛼𝑓

[

1
𝛾𝑓𝑠

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑤̄𝑓 − 𝑤̄𝑠
)

+ 1
𝛾𝑓𝑓𝑠

𝐶𝑓𝑠,𝑓
𝐷𝐺 |𝐮𝑓 − 𝐮𝑓𝑠|𝑗−1

(

𝑤̄𝑓 − 𝑤̄𝑓𝑠
)

+ 𝐶𝑓
𝐷𝑉 𝑤̄𝑓 |𝐮𝑓 |𝛼𝑓

⎤

⎥

⎥

⎦

, (12)

here the factors ℎ2∕2 do not appear due to the definition of acceler-
tion. These expressions can be obtained directly from (8) by setting
→ 0, i.e., the normal loads at the bed. This clearly indicates which

erms in (8) contribute to the enhanced gravity or the effective normal
oad at the bed, and which other terms contribute to dispersive effects.
or vanishing fine-solid and fluid components, these reduce to the
imple enhanced gravity in Denlinger and Iverson [14], Castro-Orgaz
t al. [15] and Yuan et al. [16] for single-phase granular flow equations.
ur new multi-phase formulations include buoyancy reduced solid and

ine-solid normal loads as indicated by the factors
(

1 − 𝛾𝑓𝑠
)

and 𝛾𝑓𝑓𝑠,
nd the virtual mass forces associated with . The virtual mass forces
lter the solid, fine-solid and fluid accelerations in the flow normal
irection (in 𝐷∕𝐷𝑡) that ultimately enhance the effective gravity of
he solid, fine-solid, and fluid phases. Furthermore, the drags between
he phases

(

𝐶𝐷𝐺
)

and the viscous drags
(

𝐶𝐷𝑉
)

appear only in our
nhanced gravity. Depending on the values of 𝛾,, 𝐶𝐷𝐺 , 𝐶𝐷𝑉 and the
elative phase-velocities in the flow depth direction, enhancements or
eductions of the usual gravity loads can be substantial to dominant as
ompared to the usual gravity loads, 𝑔𝑧.

These enhanced gravity terms include the accelerations of the solid,
ine-solid and fluid components in the slope normal direction indicated
y 𝐷∕𝐷𝑡. Furthermore, (12) also includes the drag contributions in
he slope normal direction. The only common quantity in (12) is the
sual gravity load, 𝑔𝑧. However, the enhanced gravities differ with the
urface normal accelerations of the solid, fine-solid and fluid phases.
epending on the flow dynamics, interfacial momentum exchanges,
iscous drags, and the boundary conditions, one or two of them could
e substantially larger than the others. One prominent example is a
andslide impacting a reservoir or a water body [1,38,42]. In this
ituation, both the enhanced gravity and the dispersion (see below)
f the water wave would be fundamentally different (can also be
arge) as compared to the enhanced gravity and the dispersion of the
ubmarine landslide. As we will see later (12) are components of the
ull non-hydrostatic model formulation.

.1.4. Dispersive contributions
The main dispersive contributions for the solid, fine-solid and fluid

re denoted by 𝑥
𝑠 ,

𝑥
𝑓𝑠,

𝑥
𝑓 which are extracted from (9)–(11). I call

hem dispersive (for simplicity of terminology, also, see [15]) and take
he form:

𝑥
𝑠 = 𝐾𝑥

𝑠
ℎ2

12

[(

𝑈2
𝑠 − 𝛾𝑓𝑠 

𝑠,𝑓
(

𝑈2
𝑓 − 𝑈2

𝑠

)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠
(

𝑈2
𝑓𝑠 − 𝑈2

𝑠

))

− 𝐷
𝐷𝑡

(

𝑈𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝑈𝑓 − 𝑈𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝑈𝑓𝑠 − 𝑈𝑠
))

]

+𝐾𝑥
𝑠
1
𝛼𝑠

ℎ2

6

[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑈𝑓 − 𝑈𝑠
)

+𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑈𝑓𝑠 − 𝑈𝑠
)

− 𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠 𝛼𝑠

]

,

𝑥
𝑓𝑠 =

ℎ2

12

[(

𝑈2
𝑓𝑠 − 𝛾𝑓𝑓𝑠

𝑓𝑠,𝑓
(

𝑈2
𝑓 − 𝑈2

𝑓𝑠

)

+ 𝛼𝑠𝑓𝑠
𝑠,𝑓𝑠

(

𝑈2
𝑓𝑠 − 𝑈2

𝑠

))

− 𝐷
𝐷𝑡

(

𝑈𝑓𝑠 − 𝛾𝑓𝑓𝑠
𝑓𝑠,𝑓 (

𝑈𝑓 − 𝑈𝑓𝑠
)

+ 𝛼𝑠𝑓𝑠
𝑠,𝑓𝑠 (𝑈𝑓𝑠 − 𝑈𝑠

)

)]

,

+ 1
𝛼𝑓𝑠

ℎ2

6

[

− 1
𝛾𝑓𝑠𝑠

𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑈𝑓𝑠 − 𝑈𝑠
)

+𝐶𝑓𝑠,𝑓
|𝐮 − 𝐮 |

𝑗−1 (𝑈 − 𝑈
)

− 𝐶𝑓𝑠
|𝐮 |𝑈 𝛼

]

,
𝐷𝐺 𝑓 𝑓𝑠 𝑓 𝑓𝑠 𝐷𝑉 𝑓𝑠 𝑓𝑠 𝑓𝑠
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

w
t
g
h
T
c

𝑥
𝑓 = ℎ2

12

[(

𝑈2
𝑓 + 𝛼𝑠𝑓

𝑠,𝑓
(

𝑈2
𝑓 − 𝑈2

𝑠

)

+ 𝛼𝑓𝑠𝑓 𝑓𝑠,𝑓
(

𝑈2
𝑓 − 𝑈2

𝑓𝑠

))

− 𝐷
𝐷𝑡

(

𝑈𝑓 + 𝛼𝑠𝑓
𝑠,𝑓 (

𝑈𝑓 − 𝑈𝑠
)

+ 𝛼𝑓𝑠𝑓 𝑓𝑠,𝑓 (

𝑈𝑓 − 𝑈𝑓𝑠
)

)]

− 1
𝛼𝑓

ℎ2

6

[

1
𝛾𝑓𝑠

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑈𝑓 − 𝑈𝑠
)

+ 1
𝛾𝑓𝑓𝑠

𝐶𝑓𝑠,𝑓
𝐷𝐺 |𝐮𝑓 − 𝐮𝑓𝑠|𝑗−1

(

𝑈𝑓 − 𝑈𝑓𝑠
)

+ 𝐶𝑓
𝐷𝑉 |𝐮𝑓 |𝑈𝑓 𝛼𝑓

⎤

⎥

⎥

⎦

. (13)

So, (12) and (13) imply that 𝜏𝑧𝑧𝑠 = 𝑔́𝑧𝑠ℎ
2∕2 + 𝑥

𝑠ℎ∕𝐾
𝑥
𝑠 , 𝜏𝑧𝑧𝑓𝑠 =

𝑔́𝑧𝑓𝑠ℎ
2∕2+𝑥

𝑓𝑠ℎ, 𝜏𝑧𝑧𝑓 = 𝑔́𝑧𝑓ℎ
2∕2+𝑥

𝑓ℎ. Hence, the effective basal normal
load is the sum of the effective gravity and (effective) dispersion.
Note that the factor ℎ is taken out from the dispersion expressions to
properly adjust the fluxes, because 𝛼𝑠𝜏𝑥𝑥𝑠 = 𝛼𝑠𝐾𝑥

𝑠 𝑔́
𝑧
𝑠ℎ

2∕2 + 𝛼𝑠𝑥
𝑠ℎ =

𝛼𝑠ℎ
[

𝛽𝑥𝑠 ℎ∕2 +𝑥
𝑠
]

, etc., where 𝛽𝑥𝑠 = 𝐾𝑥
𝑠 𝑔́

𝑧
𝑠 . Later, such structures will

appear in the lateral fluxes in the momentum balance equations, where
𝛽𝑥𝑠 ℎ∕2 and 𝐷𝑥

𝑠 correspond, respectively, to the enhanced hydraulic
pressure gradient and dispersion.

In what follows, all the terms with ∗́ are the enhanced terms,
while these and all the  terms are entirely new contributions to the
Pudasaini and Mergili [1] model. These reduce to the non-hydrostatic
relations for single-phase granular flow in Denlinger and Iverson [14],
Castro-Orgaz et al. [15], and Yuan et al. [16]. It is important to note
that the enhanced gravities (12) and the dispersion relations (13) are
derived from the 𝑤 components of the momentum balances from the
multi-phase phase mass flow model [1]. So, there are direct and strong
couplings between the solid, fine-solid and the fluid components among
these dispersion relations. As in the effective gravity, the dispersive
terms are strongly coupled, e.g., due to the interfacial drag and virtual
mass contributions.

2.2. The non-hydrostatic multi-phase mass-flow model

In what follows, I further develop the three-phase mass flow model
[1] by incorporating the enhanced gravities (12) and the dispersion
relations (13). The depth-averaged mass balance equations for the solid,
fine-solid and fluid phases are:

𝜕
𝜕𝑡
(

𝛼𝑠ℎ
)

+ 𝜕
𝜕𝑥

(

𝛼𝑠ℎ𝑢𝑠
)

+ 𝜕
𝜕𝑦

(

𝛼𝑠ℎ𝑣𝑠
)

= 0, (14a)

𝜕
𝜕𝑡
(

𝛼𝑓𝑠ℎ
)

+ 𝜕
𝜕𝑥

(

𝛼𝑓𝑠ℎ𝑢𝑓𝑠
)

+ 𝜕
𝜕𝑦

(

𝛼𝑓𝑠ℎ𝑣𝑓𝑠
)

= 0, (14b)

𝜕
𝜕𝑡
(

𝛼𝑓ℎ
)

+ 𝜕
𝜕𝑥

(

𝛼𝑓ℎ𝑢𝑓
)

+ 𝜕
𝜕𝑦

(

𝛼𝑓ℎ𝑣𝑓
)

= 0. (14c)

The 𝑥-directional depth-averaged momentum conservation equa-
tions for the solid, fine-solid and fluid phases are,

𝜕
𝜕𝑡

[

𝛼𝑠ℎ
(

𝑢𝑠 − 𝑢𝑣𝑚𝑠
)

]

+ 𝜕
𝜕𝑥

[

𝛼𝑠ℎ
(

𝑢2𝑠 − 𝑢𝑢𝑣𝑚𝑠 + 𝛽𝑥𝑠
ℎ
2
+𝑥

𝑠

)

]

+ 𝜕
𝜕𝑦

[

𝛼𝑠ℎ
(

𝑢𝑠𝑣𝑠 − 𝑢𝑣𝑣𝑚𝑠
)

]

= ℎ𝑥
𝑠 , (15a)

𝜕
𝜕𝑡

[

𝛼𝑓𝑠ℎ
(

𝑢𝑓𝑠 − 𝑢𝑣𝑚𝑓𝑠
)

]

+ 𝜕
𝜕𝑥

[

𝛼𝑓𝑠ℎ
(

𝑢2𝑓𝑠 − 𝑢𝑢𝑣𝑚𝑓𝑠 + 𝛽𝑥𝑓𝑠
ℎ
2
+𝑥

𝑓𝑠

)

]

+ 𝜕
𝜕𝑦

[

𝛼𝑓𝑠ℎ
(

𝑢𝑓𝑠𝑣𝑓𝑠 − 𝑢𝑣𝑣𝑚𝑓𝑠
)

]

= ℎ𝑥
𝑓𝑠, (15b)

𝜕
𝜕𝑡

[

𝛼𝑓ℎ
(

𝑢𝑓 + 𝑢𝑣𝑚𝑓
)

]

+ 𝜕
𝜕𝑥

[

𝛼𝑓ℎ
(

𝑢2𝑓 + 𝑢𝑢𝑣𝑚𝑓 + 𝛽𝑥𝑓
ℎ
2
+𝑥

𝑓

)

]

+ 𝜕
[

𝛼𝑓ℎ
(

𝑢𝑓 𝑣𝑓 + 𝑢𝑣𝑣𝑚
)

]

= ℎ𝑥. (15c)

𝜕𝑦 𝑓 𝑓 p

6

It is evident that the enhancements of the momentum fluxes depend
on 𝛽 and . Since the flow depth ℎ is a common factor in the momen-
tum fluxes, the terms associated with  are proportional to ℎ3, and the
term associated with 𝛽 are proportional to ℎ2. This, together with the
structure of  and 𝛽 in the fluxes in (15), signify the highly non-linear,
non-hydrostatic (dispersion) contributions.

Due to symmetry, the 𝑦-directional momentum equations for the
solid, fine-solid and fluid phases can be written similarly here and in
all the following considerations. This is achieved by formally utilizing
the replacements: 𝑥 ⟷ 𝑦 and 𝑢 ⟷ 𝑣, whenever necessary, both for
variables and associated parameters. Below, I present models for all
the fluxes, and source terms and forces in momentum equations for
multi-phase mass flows where I follow structures from Pudasaini and
Mergili [1]. I write those terms that include the non-hydrostatic terms
(enhanced gravity and dispersion). The other terms are as in Pudasaini
and Mergili [1] and are put in an Appendix for completeness.

The 𝐱-directional source terms in (15) are

𝑥
𝑠 = 𝛼𝑠

[

𝑔𝑥 −
𝑢𝑠
|𝐮𝑠|

tan 𝛿𝑠𝑔́𝑧𝑠 − 𝑔́𝑧𝑠
𝜕𝑏
𝜕𝑥

]

− 𝛼𝑠𝑔
′′𝑧
𝑠

[ 𝜕ℎ
𝜕𝑥

+ 𝜕𝑏
𝜕𝑥

]

+ 𝐶𝑠,𝑓
𝐷𝐺

(

𝑢𝑓 − 𝑢𝑠
)

|𝐮𝑓 − 𝐮𝑠|𝑗−1 + 𝐶𝑠,𝑓𝑠
𝐷𝐺

(

𝑢𝑓𝑠 − 𝑢𝑠
)

|𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

− 𝐶𝑠
𝐷𝑉 𝑢𝑠|𝐮𝑠|𝛼𝑠, (16a)

𝑥
𝑓𝑠 = 𝛼𝑓𝑠

[

𝑔𝑥 −
[

− 1
2
𝑔́𝑧𝑓𝑠

ℎ
𝛼𝑓𝑠

𝜕𝛼𝑓𝑠
𝜕𝑥

+ 𝑔́𝑧𝑓𝑠
𝜕𝑏
𝜕𝑥

−
{

2 𝜕
𝜕𝑥

(

𝜈𝑒𝑓𝑠
𝜕𝑢𝑓𝑠
𝜕𝑥

)

+ 𝜕
𝜕𝑦

(

𝜈𝑒𝑓𝑠
𝜕𝑣𝑓𝑠
𝜕𝑥

)

+ 𝜕
𝜕𝑦

(

𝜈𝑒𝑓𝑠
𝜕𝑢𝑓𝑠
𝜕𝑦

)

− 𝜈𝑒𝑓𝑠

[ 𝜕𝑢𝑓𝑠
𝜕𝑧

]

𝑏

1
ℎ

}

+ 𝜏𝑓𝑠
𝑥

𝑛𝑁

]]

− 1
𝛾𝑓𝑠𝑠

𝐶𝑠,𝑓𝑠
𝐷𝐺

(

𝑢𝑓𝑠 − 𝑢𝑠
)

|𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

+ 𝐶𝑓𝑠,𝑓
𝐷𝐺

(

𝑢𝑓 − 𝑢𝑓𝑠
)

|𝐮𝑓 − 𝐮𝑓𝑠|𝑗−1 − 𝐶𝑓𝑠
𝐷𝑉 𝑢𝑓𝑠|𝐮𝑓𝑠|𝛼𝑓𝑠, (16b)

𝑥
𝑓 = 𝛼𝑓

[

𝑔𝑥 −
[

− 1
2
𝑔́𝑧𝑓

ℎ
𝛼𝑓

𝜕𝛼𝑓
𝜕𝑥

+ 𝑔́𝑧𝑓
𝜕𝑏
𝜕𝑥

−
{

2 𝜕
𝜕𝑥

(

𝜈𝑒𝑓
𝜕𝑢𝑓
𝜕𝑥

)

+ 𝜕
𝜕𝑦

(

𝜈𝑒𝑓
𝜕𝑣𝑓
𝜕𝑥

)

+ 𝜕
𝜕𝑦

(

𝜈𝑒𝑓
𝜕𝑢𝑓
𝜕𝑦

)

− 𝜈𝑒𝑓

[ 𝜕𝑢𝑓
𝜕𝑧

]

𝑏

1
ℎ

}

+ 𝜏𝑓
𝑥

𝑛𝑁

]]

− 1
𝛾𝑓𝑠

𝐶𝑠,𝑓
𝐷𝐺

(

𝑢𝑓 − 𝑢𝑠
)

|𝐮𝑓 − 𝐮𝑠|𝑗−1

− 1
𝛾𝑓𝑓𝑠

𝐶𝑓𝑠,𝑓
𝐷𝐺

(

𝑢𝑓 − 𝑢𝑓𝑠
)

|𝐮𝑓 − 𝐮𝑓𝑠|𝑗−1 − 𝐶𝑓
𝐷𝑉 𝑢𝑓 |𝐮𝑓 |𝛼𝑓 , (16c)

here 𝑔′′𝑧𝑠 is obtained from 𝑔́𝑧𝑠 by replacing
(

1 − 𝛾𝑓𝑠
)

𝑔𝑧 by 𝛾𝑓𝑠 𝑔𝑧 while
he other terms remain unchanged. The expressions in (16) are more
eneral than those in Pudasaini and Mergili [1] as they include the non-
ydrostatic effects together with the interfacial momentum transfers.
he structure of 𝑔́ indicates that the enhancements of the forces asso-
iated with 𝑔́, including friction, buoyancy and basal and topographic
ressure gradients, depend on the sign and magnitude of 𝑔́.
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Due to the acceleration in the slope normal direction, in (16), the
solid velocity is given by 𝐮𝑠 =

(

𝑢𝑠, 𝑣𝑠, 𝑤𝑠
)

, where 𝑤𝑠 = 𝑢𝑠𝜕𝑏∕𝜕𝑥+𝑣𝑠𝜕𝑏∕𝜕𝑦
[16]. This indicates that for locally changing basal topography, the
surface normal component of velocity is important. Similar expressions
hold for the fine-solid and fluid components.

In (15) and (16), 𝑢𝑣𝑚, 𝑢𝑢𝑣𝑚, 𝑢𝑣𝑣𝑚 are the virtual mass force induced
mass and momentum enhancements, 𝛽 are the hydraulic pressure co-
efficients, 𝜈𝑒 are the effective kinematic viscosities, 𝜕𝑢∕𝜕𝑧|𝑏 are the
𝑥𝑧- basal shear stresses, 𝜏𝑛𝑁 are the enhanced non-Newtonian viscous
stresses, and 𝐶𝐷𝐺 are the drag coefficients. The momentum balances
(15) and the sources (16) indicate that the effective gravity enhances
the ‘‘hydraulic pressure gradients’’ (via the terms associated with 𝛽)
in the momentum flux, and the enhanced material loads at the base
as indicated by the terms associated with 𝑔́ and 𝑔′′, indicating their
extensive effects in the source terms. In total, the lateral flux for solid
is enhanced by 𝛼𝑠

[

𝛽𝑥𝑠 − 𝛽𝑥𝑠
]

ℎ2∕2 + 𝛼𝑠ℎ𝑥
𝑠 , where, 𝛽𝑥𝑠 = 𝐾𝑥

𝑠

(

1 − 𝛾𝑓𝑠
)

𝑔𝑧.
Similar flux enhancements emerge for the fine-solid and fluid phases.

The 𝐱-directional hydraulic pressure coefficients for solid, fine-
solid and fluid in (15) are:

𝛽𝑥𝑠 = 𝐾𝑥
𝑠 𝑔́

𝑧
𝑠 , 𝛽𝑥𝑓𝑠 = 𝑔́𝑧𝑓𝑠, 𝛽𝑥𝑓 = 𝑔́𝑧𝑓 , (17)

where 𝐾𝑥
𝑠 is the earth pressure coefficient and 𝑔́ are given by (12).

Above, I only wrote those terms that are new in the non-hydrostatic for-
mulations, that are 𝛽, 𝑔́, 𝑔′′ and . Based on Pudasaini and Mergili [1],
all other terms appearing in the above model equations are explained
in the Appendix.

Reduction to existing models: By setting the fine-solid and fluid
fractions to zero (𝛼𝑓𝑠 → 0, 𝛼𝑓 → 0), the new non-hydrostatic multi-
phase mass flow model reduces to the single-phase non-hydrostatic
granular flow models by Castro-Orgaz et al. [15] and Yuan et al. [16].
The major parts of 𝑔́, 𝑔′′, 𝛽 terms, and entirely the  terms in (15)–(16)
are new to Pudasaini and Mergili [1] which are due to non-hydrostatic
contributions. Furthermore, the Pudasaini and Mergili [1] multi-phase
mass flow model is obtained by neglecting all the non-hydrostatic
contributions, i.e., by only considering 𝑔́𝑧𝑠 ∶=

(

1 − 𝛾𝑓𝑠
)

𝑔𝑧, 𝑔́𝑧𝑓𝑠 ∶= 𝛾𝑓𝑓𝑠𝑔
𝑧,

𝑔́𝑧𝑓 ∶= 𝑔𝑧; 𝑥
𝑠 = 0,𝑥

𝑓𝑠 = 0,𝑥
𝑓 = 0.

2.3. Model structure and simulation strategy

2.3.1. A closed system of equations
The model (14)–(15) constitutes a set of nine equations for mass

and momentum balances (including the 𝑦-components) for three-phase
mixture mass flows in nine unknowns, namely, the solid, fine-solid and
fluid phase velocities in the down-slope

(

𝑢𝑠, 𝑢𝑓𝑠, 𝑢𝑓
)

, and cross slope
(

𝑣𝑠, 𝑣𝑓𝑠, 𝑣𝑓
)

directions, and the respective phase depths
(

ℎ𝑠 = 𝛼𝑠ℎ, ℎ𝑓𝑠 = 𝛼𝑓𝑠ℎ, ℎ𝑓 = 𝛼𝑓ℎ
)

. Note that ℎ𝑠 + ℎ𝑓𝑠 + ℎ𝑓 = ℎ, the total
material depth, and 𝛼𝑠+𝛼𝑓𝑠+𝛼𝑓 = 1 is the hold up identity. The model
is written in a well structured form of partial differential equations
and may be solved numerically once appropriate initial and boundary
conditions are prescribed [1].

2.3.2. Numerical simulation approach and scenarios
It is important to note that, in structure, (14)–(15) are the same as

in Pudasaini and Mergili [1]. It is advantageous, because the similar
analysis and numerical methods and tools as in Pudasaini and Mergili
[1] might be applied to solve the new system of non-hydrostatic multi-
phase mass flow model. In order to apprehend the rapidly changing
behavior of the flow variables, the model equations such as those
presented here are solved in conservative variables with high-resolution
numerical schemes [1]. This allows to extend the numerical strategy
from the usual multi-phase models to the non-hydrostatic multi-phase
models. So, the new model can be implemented in the advanced
GIS-based multi-phase software tool r.avaflow 2.0 [1,39]. However,
7

complexity arises due to the new non-hydrostatic terms, particularly
associated with the higher order time and spatial derivatives. To avoid
instability, existing numerical solutions of the single-phase model only
considers an approximation of the enhanced gravity [16]. The aim
should be to include more general non-hydrostatic effects in the sim-
ulation tools, e.g., in the r.avaflow, to present a full application of
the non-hydrostatic, dispersive multi-phase mass flows. Eminent ex-
amples to use the new multi-phase non-hydrostatic mass flow model
to generate the best possible simulation results may include the 2018
Anak Krakatau volcanic collapse and also the potential catastrophic
failure of the west flank of the La Palma as well as induced tsunami
waves [39,43]. In these scenarios, the collapse of huge mountain flanks,
and rapid impacts at ocean may transfer tremendous energy into the
water body producing high amplitude complex dispersive surface water
waves including the dispersive submarine mass transports and turbidity
currents, pressing for the use of coupled, non-hydrostatic multi-phase
mass flow models. However, application of the model to such natural
events would demand substantial additional works, and corresponding
parameter estimates, either derived from the field measurements or
back calculations, requiring observation data, which is out of scope
here.

As discussed above, relations (12) and (13) introduce higher or-
der spatial and time derivatives in the momentum fluxes. The new
enhanced gravity and dispersion may lead to a complexity in nu-
merical integration of the model equations, and thus may require a
fundamentally extended, or new and complicated numerical method
to properly solve the model equations. That was the case even for the
simple single-phase granular flow models [15,16]. So, below, I propose
some reductions of the normal load ignoring the time derivatives in
dispersion, and approximations of the time derivatives in dispersion
and enhanced gravity. These reductions can be utilized in numerical
simulations as they simplify the complexity.

3. Possible simplifications

3.1. Reduced normal load — ignoring the time derivatives in dispersion

One way to avoid computational difficulties, but still include the
new effects, is to assume a negligible local time derivatives (𝜕∕𝜕𝑡) in
(9). This can be a reasonable assumption, e.g., after the initial impact
of the landslide at the water body and during continues impact. Another
possibility is to ignore all the 𝐷∕𝐷𝑡 terms in (9). Yet, the reduced solid
normal stress includes non-hydrostatic effects due to buoyancy, virtual
mass, drags and slope parallel divergence and relative divergence,

̄𝑧𝑧𝑠𝑅 =
(

1 − 𝛾𝑓𝑠
)

𝑔𝑧 1
2
ℎ2 − 1

2
1
𝛼𝑠

ℎ2
[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑤̄𝑓 − 𝑤̄𝑠
)

+ 𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑤̄𝑓𝑠 − 𝑤̄𝑠
)

− 𝐶𝑠
𝐷𝑉 𝑤̄𝑠|𝐮𝑠|𝛼𝑠

]

+ ℎ3

12

[(

𝑈2
𝑠 − 𝛾𝑓𝑠 

𝑠,𝑓
(

𝑈2
𝑓 − 𝑈2

𝑠

)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠
(

𝑈2
𝑓𝑠 − 𝑈2

𝑠

))]

+ 1
𝛼𝑠

ℎ3

6

[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑈𝑓 − 𝑈𝑠
)

+𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑈𝑓𝑠 − 𝑈𝑠
)

− 𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠 𝛼𝑠

]

, (18)

here 𝑅 in 𝜏𝑧𝑧𝑠𝑅 stands for the reduced normal stress. And thus,
he corresponding reduced enhanced gravity and reduced dispersion
xpressions are given, respectively, by

𝑔́𝑧𝑠𝑅 =
(

1 − 𝛾𝑓𝑠
)

𝑔𝑧 − 1
𝛼𝑠

[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑤̄𝑓 − 𝑤̄𝑠
)

+𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑤̄𝑓𝑠 − 𝑤̄𝑠
)

− 𝐶𝑠
𝐷𝑉 𝑤̄𝑠|𝐮𝑠|𝛼𝑠

]

,

𝑠 = 𝐾𝑥 ℎ2
[(

𝑈2 − 𝛾𝑓𝑠,𝑓
(

𝑈2 − 𝑈2
)

− 𝛾𝑓𝑠𝑠,𝑓𝑠
(

𝑈2 − 𝑈2
))]
𝑠𝑅 𝑠 12 𝑠 𝑠 𝑓 𝑠 𝑠 𝑓𝑠 𝑠
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+

+ 1
𝛼𝑠

𝐾𝑥
𝑠
ℎ2

6

[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑈𝑓 − 𝑈𝑠
)

+𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑈𝑓𝑠 − 𝑈𝑠
)

− 𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠 𝛼𝑠

]

. (19)

From (12) and (13), similar reduced expressions can be obtained
for the fine-solid and fluid components. For single-phase granular
flow without the fine-solid and fluid components, (19) would further
drastically reduce to 𝑔́𝑧𝑠𝑅 = 𝑔𝑧 + 𝐶𝑠

𝐷𝑉 𝑤̄𝑠|𝐮𝑠| and 𝑥
𝑠𝑅 = 𝐾𝑥

𝑠 ℎ
2𝑈2

𝑠 ∕12 −
1
6𝐾

𝑥
𝑠 ℎ

2𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠. However, in general, as in (12) and (13), the full

descriptions of 𝑔́𝑧𝑠 and 𝑥
𝑠 (similar for fine-solid and fluid compo-

nents) should be considered in simulating non-hydrostatic mixture
flows.

3.2. Approximations to time derivatives in dispersion and enhanced gravity

One of the major difficulties associated with the non-hydrostatic
model presented above is the presence of the time derivatives in en-
hanced gravity and dispersion. In simple situations without interfacial
drag and virtual mass, the dispersion in (15a) is given by

𝜕
𝜕𝑥

[𝐾𝑥
𝑠

12
𝛼𝑠ℎ

3
{

𝑈2
𝑠 −

𝐷𝑈𝑠
𝐷𝑡

− 2𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠

}]

= 𝜕
𝜕𝑥

[𝐾𝑥
𝑠

12
𝛼𝑠ℎ

3
{

𝑈2
𝑠 −

(

𝜕
𝜕𝑡

+ 𝑢𝑠
𝜕
𝜕𝑥

+ 𝑣𝑠
𝜕
𝜕𝑦

)

𝑈𝑠 − 2𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠

}]

= 𝜕
𝜕𝑥

[𝐾𝑥
𝑠

12
𝛼𝑠ℎ

3
{

𝑈2
𝑠 −

(

𝜕
𝜕𝑥

𝜕𝑢𝑠
𝜕𝑡

+ 𝜕
𝜕𝑦

𝜕𝑣𝑠
𝜕𝑡

)

−
(

𝑢𝑠
𝜕
𝜕𝑥

+ 𝑣𝑠
𝜕
𝜕𝑦

)

𝑈𝑠 − 2𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠

}]

. (20)

From a computational point of view 𝜕𝑢𝑠∕𝜕𝑡 and 𝜕𝑣𝑠∕𝜕𝑡 in (20) may
pose great difficulties. So, it is desirable to find some expressions for
𝜕𝑢𝑠∕𝜕𝑡 and 𝜕𝑣𝑠∕𝜕𝑡 in terms of spatial derivatives, flow variables, and
parameters, but no direct involvement of (the time and) time deriva-
tives. This is a challenging task. However, we can develop simplified
expressions for these for non-inertial flows. This can be achieved,
e.g., by combining the simple mass and momentum balance equation
for solid from (14a) and (15a), by ignoring all extra forces (which,
however, could be considered to include more complex situations).
Which is equivalent to assume that all the applied forces balance each
other. This results in a simple expression as:

𝜕𝑢𝑠
𝜕𝑡

= −𝑢𝑠
𝜕𝑢𝑠
𝜕𝑥

− 𝑣𝑠
𝜕𝑢𝑠
𝜕𝑦

. (21)

Inserting (21) in to (20), I technically remove 𝜕𝑢𝑠∕𝜕𝑡, which, how-
ever, is highly non-linear and very complex as it involves the fifth order
terms (combining flow depth and velocities) and third order deriva-
tives. Simplified expressions for the fine-solid and fluid components can
be developed, and respectively take the form:

𝜕𝑢𝑓𝑠
𝜕𝑡

= −𝑢𝑓𝑠
𝜕𝑢𝑓𝑠
𝜕𝑥

− 𝑣𝑓𝑠
𝜕𝑢𝑓𝑠
𝜕𝑦

, (22)

𝜕𝑢𝑓
𝜕𝑡

= −𝑢𝑓
𝜕𝑢𝑓
𝜕𝑥

− 𝑣𝑓
𝜕𝑢𝑓
𝜕𝑦

. (23)

Similar expressions hold for 𝜕𝑣𝑠∕𝜕𝑡, 𝜕𝑣𝑓𝑠∕𝜕𝑡 and 𝜕𝑣𝑓∕𝜕𝑡. Then, the
ispersion term containing the time derivatives, together with 𝑈2 and
he viscous drag in (20), reduces, for solid-phase, to:

2
𝑠 −

𝐷𝑈𝑠
𝐷𝑡

−2𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠 = 2𝑈2

𝑠 −2
𝜕𝑢𝑠
𝜕𝑥

𝜕𝑣𝑠
𝜕𝑦

+2
𝜕𝑣𝑠
𝜕𝑥

𝜕𝑢𝑠
𝜕𝑦

−2𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠. (24)

Expressions for 𝑈2
𝑓𝑠 − 𝐷𝑈𝑓𝑠∕𝐷𝑡 and 𝑈2

𝑓 − 𝐷𝑈𝑓∕𝐷𝑡 take analogous
orms.
8

Similarly, with somewhat lengthy calculations, we can write the
ime derivative term, 𝐷𝑤̄𝑠∕𝐷𝑡, in the enhanced gravity (see, Sec-

tion 2.1.3) as

𝐷𝑤̄𝑠
𝐷𝑡

= −1
2

[

−ℎ

{

(

𝜕𝑢𝑠
𝜕𝑥

)2
+ 2

𝜕𝑣𝑠
𝜕𝑥

𝜕𝑢𝑠
𝜕𝑦

+
(

𝜕𝑣𝑠
𝜕𝑦

)2
}

+ 𝜕ℎ
𝜕𝑡

(

𝜕𝑢𝑠
𝜕𝑥

+
𝜕𝑣𝑠
𝜕𝑦

)

+
(

𝑢𝑠
𝜕ℎ
𝜕𝑥

+ 𝑣𝑠
𝜕ℎ
𝜕𝑦

)(

𝜕𝑢𝑠
𝜕𝑥

+
𝜕𝑣𝑠
𝜕𝑦

)]

, (25)

here the topographic slope changes (𝜕𝑏∕𝜕𝑥, 𝜕𝑏∕𝜕𝑦) has been ignored,
hich could easily be included. Similar expressions as (25) hold for

ine-solid and fluid components, 𝐷𝑤̄𝑓𝑠∕𝐷𝑡, 𝐷𝑤̄𝑓∕𝐷𝑡.
Due to the definition of 𝑤̄𝑠, the time derivative of the flow depth,

𝜕ℎ∕𝜕𝑡, still remains in (25). However, this can be obtained by summing-
p the mass balance Eqs. (14) for the solid, fine-solid and fluid phases:

𝜕ℎ
𝜕𝑡

= − 𝜕
𝜕𝑥

[

ℎ
(

𝛼𝑠𝑢𝑠 + 𝛼𝑓𝑠𝑢𝑓𝑠 + 𝛼𝑓 𝑢𝑓
)]

− 𝜕
𝜕𝑦

[

ℎ
(

𝛼𝑠𝑣𝑠 + 𝛼𝑓𝑠𝑣𝑓𝑠 + 𝛼𝑓 𝑣𝑓
)]

,

(26)

where 𝛼𝑠 + 𝛼𝑓𝑠 + 𝛼𝑓 = 1 has been employed. This way we can avoid the
time derivatives in the terms associated with dispersion and enhanced
gravity.

4. Analysis of the simplified dispersion relation

Consider the dispersion for solid from (13):

𝑥
𝑠 = 𝐾𝑥

𝑠
ℎ2

12

[(

𝑈2
𝑠 − 𝛾𝑓𝑠 

𝑠,𝑓
(

𝑈2
𝑓 − 𝑈2

𝑠

)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠
(

𝑈2
𝑓𝑠 − 𝑈2

𝑠

))

− 𝐷
𝐷𝑡

(

𝑈𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝑈𝑓 − 𝑈𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝑈𝑓𝑠 − 𝑈𝑠
))

]

+𝐾𝑥
𝑠
1
𝛼𝑠

ℎ2

6

[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑈𝑓 − 𝑈𝑠
)

+𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑈𝑓𝑠 − 𝑈𝑠
)

− 𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠 𝛼𝑠

]

. (27)

The flux in the momentum balance shows that in total the dis-
ersion relation contains third order terms in flow depth, and third
rder derivatives of the flow velocities. These are the highest order
erms therein. So, it is important to analyze the terms appearing in
he dispersion relation, and additionally seek its simplifications and
onsequences.

.1. The role of drag

For slowly varying slope parallel divergences, 𝑈2
𝑠 , 𝑈

2
𝑓𝑠, 𝑈

2
𝑓 can be

eglected as compared to the other terms. Then, (27) reduces to

𝑥
𝑠 = −𝐾𝑥

𝑠
ℎ2

12

[ 𝐷
𝐷𝑡

(

𝑈𝑠 − 𝛾𝑓𝑠 
𝑠,𝑓 (

𝑈𝑓 − 𝑈𝑠
)

− 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝑈𝑓𝑠 − 𝑈𝑠
))

]

+𝐾𝑥
𝑠
1
𝛼𝑠

ℎ2

6

[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑈𝑓 − 𝑈𝑠
)

+𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑈𝑓𝑠 − 𝑈𝑠
)

− 𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠 𝛼𝑠

]

.

(28)

or negligible virtual mass force, (28) simplifies to

𝑥
𝑠 = −𝐾𝑥

𝑠
ℎ2

12
𝐷𝑈𝑠
𝐷𝑡

𝐾𝑥
𝑠
1
𝛼𝑠

ℎ2

6

[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑈𝑓 − 𝑈𝑠
)

+ 𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑈𝑓𝑠 − 𝑈𝑠
)

−𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠 𝛼𝑠

]

.

(29)
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Moreover, for non-accelerating flows, the terms with 𝐷∕𝐷𝑡 vanish, and
29) further reduces to

𝑥
𝑠 = 𝐾𝑥

𝑠
1
𝛼𝑠

ℎ2

6

[

𝐶𝑠,𝑓
𝐷𝐺|𝐮𝑓 − 𝐮𝑠|𝑗−1

(

𝑈𝑓 − 𝑈𝑠
)

+𝐶𝑠,𝑓𝑠
𝐷𝐺 |𝐮𝑓𝑠 − 𝐮𝑠|𝑗−1

(

𝑈𝑓𝑠 − 𝑈𝑠
)

− 𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠 𝛼𝑠

]

. (30)

So, the interfacial and viscous drag may play an important role in
generating dispersion relation in mixture mass flows which was not the
case in the single-phase mass flows [15,16].

4.2. Negligible dispersion

In the most simple case, interfacial drags and virtual masses may be
neglected. A situation can arise such that the dispersion effect could be
ignored. Then, from (15a) and (27), by integrating 𝜕

[

𝛼𝑠ℎ𝑥
𝑠
]

∕𝜕𝑥 = 0
with respect to 𝑥, I obtain:
𝐾𝑥

𝑠
12

𝛼𝑠ℎ
3
(

𝑈2
𝑠 −

𝐷𝑈𝑠
𝐷𝑡

− 2𝐶𝑠
𝐷𝑉 |𝐮𝑠|𝑈𝑠

)

= 𝑓0 , (31)

where 𝑓0 is a constant of integration. However, determination of 𝑓0
may involve complex physical processes (explained in Section 4.3–
Section 4.5). For simplicity, assume a channelized flow, so the variation
of flow dynamic quantities with 𝑦 is negligible. For notational conve-
nience I write 𝑢 = 𝑢𝑠 and 𝛽 = 𝐶𝑠

𝐷𝑉 . Then, for 𝑢𝑠 > 0, (31) reduces to

𝜕2𝑢
𝜕𝑥𝜕𝑡

+ 𝜕2

𝜕𝑥2
( 1
2
𝑢2
)

− 2
( 𝜕𝑢
𝜕𝑥

)2
+ 𝛽 𝜕

𝜕𝑥
(

𝑢2
)

= −𝑓 , (32)

where

𝑓 =
12𝑓0

𝐾𝑥
𝑠 𝛼𝑠ℎ3

. (33)

I call 𝑓 the (dissipative) prime-force coefficient (or, simply the -
force coefficient). Eq. (32) can be solved analytically only with some
further assumptions. And, the solutions are presented in Section 4.3.
If the solid particle distribution is uniform and the flow height can be
approximated (by a constant), e.g., for a smooth flow, then, 𝑓 is a
constant. Eq. (32) can further be simplified as follows.

I. Negligible (𝜕𝑢∕𝜕𝑥)2: First, assume that 𝜕𝑢∕𝜕𝑥 is small and thus
(𝜕𝑢∕𝜕𝑥)2 can be neglected. Then, integrating (32) with respect to 𝑥, I
btain:
𝜕𝑢
𝜕𝑡

+ 𝜕
𝜕𝑥

( 1
2
𝑢2
)

= −𝛽𝑢2 − 𝑓𝑥 + 𝛼, (34)

where 𝛼 is a constant of integration, and I call −𝑓𝑥 the prime-
force (or, simply the -force), per unit mass. With this, I draw an
important conclusion, that for spatially slowly varying velocity field,
non-dispersive flows degenerate into an advective-dissipative system
with a complex source term. Here, dissipation refers to the viscous
dissipation due to the drag contribution −𝛽𝑢2, and also −𝑓𝑥, that will
be elaborated later. When 𝑓0 → 0, or ℎ is large (enough) then 𝑓 → 0.
Alternatively, consider sufficiently small 𝑥. In both situations, 𝑓𝑥 is
negligible, and (34) becomes an inviscid, dissipative Burgers’ equation
developed by Pudasaini and Krautblatter [44]:
𝜕𝑢
𝜕𝑡

+ 𝜕
𝜕𝑥

( 1
2
𝑢2
)

= 𝛼 − 𝛽𝑢2. (35)

From a simple physical consideration, following Pudasaini and
rautblatter [44], 𝛼 can represent the net driving force for the landslide
otion, defined later at Section 5.1. So, (34) can be viewed as the

ormal extension of the Pudasaini and Krautblatter [44] landslide
elocity equation, who also constructed numerous exact analytical
olutions for (35), including simple to very sophisticated ones.

The super inviscid dissipative Burgers’ equation: There are two
ascinating aspects of (35). First, by setting the dispersion structure
which is internal to the new model developed here) to zero, I obtained
he reduced equation of landslide motion without dispersion in Puda-
aini and Krautblatter [44]. Second, the emergence of (35) explicitly
9

roves the consistency of our new model with dispersion. However,
hen 𝑓𝑥 ≠ 0, (34) is the extension of the inviscid, dissipative
urgers’ equation in Pudasaini and Krautblatter [44], for which, no
xact analytical solutions have so far been developed. Yet, the model
32) is more complex and general than (34). For this reason, I call
34) the extension, and (32) the super generalization of the inviscid,
issipative Burgers’ equation.

II. Time independent flows: Second, assume a time-independent
steady state) flow. Then, from (32) we have

𝜕2

𝜕𝑥2
(

𝑢2
)

− 4
( 𝜕𝑢
𝜕𝑥

)2
+ 2𝛽 𝜕

𝜕𝑥
(

𝑢2
)

= −2𝑓 . (36)

Since 𝛼𝑠, 𝐾𝑥
𝑠 and ℎ are positive, the nature of solution depends on

the sign of 𝑓0 and its magnitude in 𝑓 as given in (33).

4.3. Analytical solutions

Physically meaningful exact solutions explain the true and entire na-
ture of the problem associated with the model equation [45]. The exact
analytical solutions to simplified cases of non-linear debris avalanche
model equations provide important insights into the full flow behavior
of the complex system [44], and are often needed to calibrate and
validate the numerical solutions as a prerequisite before running nu-
merical simulations based on complex numerical schemes. So, such
solutions should be developed, analyzed and properly understood prior
to numerical simulations. This is very useful to interpret complicated
simulations and/or avoid mistakes associated with numerical simula-
tions. Here, I construct some exact analytical solutions to (36) for yet
different simplified cases.

I. 𝑓 = 0, Vanishing prime-force: With this, the exact solution for
(36) takes the form:

𝑢(𝑥) = 𝐶2 exp
[

𝐶1
𝛽

exp(2𝛽𝑥)
]

. (37)

There are two integration parameters 𝐶1, 𝐶2 to be determined,
e.g., with the value and the slope of 𝑢 at a given point.

II. 𝛽 = 0, Vanishing drag: For this, the exact solution for (36)
becomes more complex:

𝑢(𝑥) =

√

−𝑓 exp
(

−𝐶1
)

tanh
[

exp
(

𝐶1
) (

𝐶2 + 𝑥
)]

√

tanh2
[

exp
(

𝐶1
) (

𝐶2 + 𝑥
)]

− 1
, (38)

where the two integration parameters 𝐶1, 𝐶2 are to be determined.
he solutions (37) and (38) with some parameter values are presented

n Fig. 1 showing the exponential increase in the velocity field as a
unction of the travel distance. Where, for comparison, the solution (37)
as been shifted down by about 2. However, more realistic solution is
resented below when both 𝑓 and 𝛽 cannot be ignored.
III. Small 𝜕𝑢∕𝜕𝑥: Then, (𝜕𝑢∕𝜕𝑥)2 can be neglected in (36) which,

after integration, reduces to

𝑢 𝜕𝑢
𝜕𝑥

= 𝛼 − 𝛽𝑢2 − 𝑓𝑥, (39)

where 𝛼 is a constant (the net driving force, see, Section 5.1), and

𝑇 𝑠
𝑓 = 𝛼 − 𝛽𝑢2 − 𝑓𝑥, (40)

constitutes the total system force. The model (39) includes both the
parameters 𝛽 and 𝑓 and extends the Pudasaini and Krautblatter [44]
landslide velocity equation for the time-independent motion for which
their model corresponds to 𝑓 = 0. With the initial condition 𝑢(0) = 0,
the exact analytical solution for (39) yields:

𝑢(𝑥) =
√

𝛼
𝛽

√

[

1 − exp (−2𝛽𝑥)
]

− 𝑢
[

(2𝛽𝑥 − 1) + exp (−2𝛽𝑥)
]

, (41)

here 𝑢 =
1
2

1
𝛼𝛽

𝑓 . I call 𝑢 the unified prime-force coefficient, which
is a dimensionless number (quantity), and emerged here in the new
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Fig. 1. Velocity fields represented by the solutions (37) with parameters 𝐶1 = 0.05, 𝐶2 =
1.0, 𝛽 = 0.075; and (38) with parameters 𝐶1 = 0.01, 𝐶2 = 0.005,𝑓 = 2.5 × 10−6.

solution (41). It is induced by the prime-force coefficient 𝑓 , and
lso includes other force components, the net driving force 𝛼, and the
iscous resistance, represented by 𝛽.

4.4. Postulation of the prime-force: −𝑓𝑥

The prime-force coefficient −𝑓 in (32), and the prime-force −𝑓𝑥
n (34) appear systematically. They emerged from our new modeling
pproach, with physical-mathematical foundation, from integrating the
ate of acceleration, and the acceleration itself. This is exactly the rea-
on why −𝑓𝑥 is a dissipative (or anti-dissipative) force, and −𝑓 is the

spatial rate of the prime-force along the slope. So, the new prime-force
is physically meaningful. The values of 𝑓 should be estimated with
he dissipative processes taking place along the channel. It requires
ome extra and proper understanding of the flow dynamics to exactly
etermine 𝑓 in (32) and, thus, the force −𝑓𝑥 itself. However, I have
ormally postulated (or invented) a new force mechanism, the prime-
orce −𝑓𝑥, and have shown the physical ground for its existence. Due
o the presence of the term −𝑓𝑥, the landslide velocity model (39),
nd its solution (41) are novel. The term −𝑓𝑥 in (39) adds some

dissipative force that results in the deviation of the solution from the
reference solution, 𝑓 = 0, produced by the driving force 𝛼 and the
viscous resistance associated with 𝛽. We can perceive −𝑓𝑥 in different
ways. It can be seen as the congregate of space dependent dissipative
forces. Yet, −𝑓𝑥 can be realized as any additional force other than the
driving force 𝛼 and the viscous resistance −𝛽𝑢2 in their classical forms,
which, unlike −𝑓𝑥, do not contain any spatially varying dissipative
contributions. As it is a completely new term and conception, its
physical meaning and significance is worth exclusive elaboration in
(32), (34), (36), (39), and (41). As demonstrated below in Figs. 2 and
3, the prime-force turned-out to be very useful in controlling the mass
flow dynamics, or any other dynamical system, that can be described
by the structure of the model equations presented here.

4.4.1. Constraining 𝑓
We need to physically constrain 𝑓 in (32). Here, I present two

possible scenarios. Without loss of generality, I impose physically le-
gitimate and mathematically consistent conditions on the velocity and
its derivatives at some position 𝑥0 somewhere along the channel, or at
appropriately chosen near (landslide) source location.

Scenario A: First, consider a plausible, but typical velocity and
velocity gradients with magnitudes as: 𝑢

(

𝑥0
)

= 35, (𝜕𝑢∕𝜕𝑥)
(

𝑥0
)

=
0.01,

(

𝜕2𝑢∕𝜕𝑥2
) (

𝑥0
)

= 0.00021, and 𝛽 = 0.0019. Then, from (32),
by neglecting the time variation of 𝜕𝑢∕𝜕𝑥, 𝑓 assumes the value on
the order of −0.0085 and 𝑢 = −0.3. However, similar values of 𝑓
and 𝑢 can be obtained with other physically admissible choices of
𝑢
(

𝑥
)

, 𝜕𝑢∕𝜕𝑥
(

𝑥
)

,
(

𝜕2𝑢∕𝜕𝑥2
) (

𝑥
)

, and 𝛽.
0 ( ) 0 0

10
Fig. 2. The landslide motion enhanced by the prime-force −𝑓𝑥, for 𝑓 < 0 given by
he solution (41), where 𝑢 = 𝑓 ∕ (2𝛼𝛽). For any value of 𝑓 < 0, no matter how close
s it to 0, the system continuously deviates away from the reference state 𝑓 = 0.

Fig. 3. The landslide motion controlled by the prime-force −𝑓𝑥, for 𝑓 > 0 given by
he solution (41), where 𝑢 = 𝑓 ∕ (2𝛼𝛽). The constrained velocity dome-curves and the
educed travel distances are shown. For any value of 𝑓 > 0, no matter how close is
t to 0, the system continuously bends below the reference state 𝑓 = 0.

Scenario B: Second, consider another plausible, but fundamentally
ifferent scenario, such that the velocity attains its local maximum
omewhere at 𝑥0 in the channel (e.g., a contracting flow). This is
athematically equivalent to (𝜕𝑢∕𝜕𝑥)

(

𝑥0
)

= 0 and
(

𝜕2𝑢∕𝜕𝑥2
) (

𝑥0
)

is
egative, say −0.00032. With this, for the typical velocity of 𝑢

(

𝑥0
)

= 35,
he estimated value of 𝑓 is on the order of 0.0112, and 𝑢 = 0.4. Again,
imilar values of 𝑓 and 𝑢 can be obtained with other physically
dmissible choices of 𝑢

(

𝑥0
)

, (𝜕𝑢∕𝜕𝑥)
(

𝑥0
)

and
(

𝜕2𝑢∕𝜕𝑥2
) (

𝑥0
)

.

.4.2. Dynamics of the prime-force −𝑓𝑥
Solutions presented in Fig. 2 for Scenario A with parameters 𝛼 = 7.0

nd 𝛽 = 0.0019 (as in [44]) show how the negative values of 𝑓 (thus,
the positive additional prime-force −𝑓𝑥) enhances the motion from
that discarding the effect of 𝑓 , i.e., 𝑓 = 0. As the value of 𝑢 (or 𝑓 =
2𝛼𝛽 𝑢) decreases, the -force increases, and the velocity continuously
deviates away from the reference (𝑓 = 0) state (solution). Even a very
small value of 𝑓 pushes the system away from the reference state,
and it continues to do so as 𝑓 decreases. Thus, the term −𝑓𝑥 with
𝑓 < 0 strongly weakens the drag force, adds to the pre-existing driving
force, and thus the reference-state is never reached. It can be a possible
scenario as the mass travels further downstream such that the drag
force is always weaker than the net driving force and the additional
force generated by the new term, −𝑓𝑥, along the slope. This means
that, as long as the condition

(

𝛼 − 𝑓𝑥
)

> 𝛽𝑢2 is satisfied, the system
accelerates, always.

Even more interesting, and perhaps physically more important, is
the situation when 𝑓 > 0. This induces a spatially varying additional
dissipative force resulting in the reduction of the total system force
𝑇 𝑠 in (40) than before with the reference state, the solution with
𝑓
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𝑓 = 0, which effectively means that the mass decelerates as it slides
downstream. This results in the reduced motion of the landslide. Then,
depending on the magnitude of 𝑢 (or 𝑓 = 2𝛼𝛽 𝑢), both the velocity
nd the travel distance will be reduced significantly to dramatically.
he solutions are presented in Fig. 3 for Scenario B, with parameters
= 7.0 and 𝛽 = 0.0019, showing differently architectured beautiful

ome-like constrained velocity fields and the firmly reduced mobility
ith increasing values of 𝑓 > 0. Interestingly, no matter how small,

he novel observation is that, any positive value of 𝑓 results in the
ignificantly reduced mobility (velocity) and the run-out. This can
appen, if there emerges any (other) energy dissipation mechanism
long the slope. This effectively means that the total system force 𝑇 𝑠

𝑓 is
ontinuously reduced as the mass slides downslope. So, after a certain
osition, the situation may prevail such that 𝛽𝑢2 >

(

𝛼 − 𝑓𝑥
)

, and the
ystem decelerates along the slope, always, as long as 𝑓 > 0. This
esults in the reduced motion and the travel distance.

Both Figs. 2 and 3 demonstrate that the term −𝑓𝑥 in (39) can
uickly and strongly compel the system away from its reference state
𝑓 = 0). From the physical point of view, the -force

(

−𝑓𝑥
)

is associ-
ted with any possible spatially varying dissipative (or anti-dissipative)
orce. This may include any elements of forces that are not contained in
and 𝛽. The Coulomb-type force in 𝛼 and the drag force associated with
are almost exclusively used in mass flow simulations. However, the

patially dependent -force, postulated here, is entirely new, that was
ade possible with our modeling process. Yet, as revealed by Figs. 2

nd 3, it helps to fundamentally and precisely control the dynamics, de-
osition and run-out of the landslide. I formally summarize these results
n a Theorem, which, for time-dependent processes, is a postulation.

he  -force Theorem 4.1: There exists a unique number 𝑓 > 0 such
hat the landslide motion (run-out) described by the dynamical equation
𝜕𝑢
𝜕𝑡

+ 𝜕
𝜕𝑥

( 1
2
𝑢2
)

= 𝛼 − 𝛽𝑢2 − 𝑓𝑥, (42)

an be precisely controlled as expected. Here, 𝑡 is time, 𝑥 is the position
long the slope, 𝑢 is the landslide velocity, 𝛼 is the net driving force, 𝛽 is the
iscous drag coefficient, and 𝑓 is the prime-force coefficient.

.5. The prime-force: Essence, implication and use in simulation

Here, I further explain the essence and application potential of the
ew prime-force. Practitioners and applied researchers are frequently in
rouble in controlling the motion and run-out of mass flows. One of the
iggest problems in dealing with the natural mass flow events is the
roper simulation of their flow velocities and run-out distances. This
lso applies to industrial mass transports. We know that, more or less,
ntil now, different forces are used in a way simulations best fit the
ata. The considered forces are sometimes very low (almost none) and
ometimes substantially (much) higher than reality [38,40,46–48]. This
learly indicates that there are some physical processes operating in
ature we were not aware of before. Here, I have formally proven that,
n principle, such process exists, which can be quantified. The prime-
orce does exactly this by controlling the motion in a precise way. My
imple model, and particularly the emergence of the new prime-force,
𝑓𝑥, can tremendously help to address this long standing problem.

n this respect, the model (39), and its exact analytical solution (41),
an be very useful for practitioners and engineers in efficiently and
uickly simulating the motion of the landslide down the entire slope,
ccelerating and decelerating motions, and deposition as it comes to an
tandstill in a fully controlled manner.

There are two important aspects. (𝑖) I have physically and math-
matically proven that a new force structure, the prime-force, exists
hich is extra to the known frictional or viscous forces. (𝑖𝑖) There
re challenges related to the correct reproduction of field observations
hrough simulations. Often, we have difficulties in adequately back-
alculating the observed mass flow events. The prime-force is induced
y the rate of spatially varying dissipative forces, but not merely the
 i

11
patially varying friction and viscosity parameters. So, the prime-force
𝑖) will help to overcome the challenges in (𝑖𝑖) and accordingly support

the practitioners. However, if it is only about the spatial distribution
and evolution of friction and viscosity parameters, which we still do
not at all understand, and also various numerical issues (e.g., cell size,
topography and flow boundary), both do not involve the spatial rate of
dissipative forces, the challenges in (𝑖𝑖) might still be addressed without
the prime-force.

The Coulomb force cannot contain all the friction effects. The same
applies to the viscous drag. As simulations often contrast the observa-
tions significantly, and none of the forces we know can reproduce the
observation, there must be something extra to the Coulomb and viscous
drag forces in the form we already know. The prime-force does exactly
this. The prime force congregates all forces with spatially varying rate
of dissipations that are not in 𝛼 and 𝛽, and complement to what we
now. The prime-force may even combine the Coulomb and viscous
orces and generate a spatially varying rate of dissipation. One may
et think of producing similar results, as done above by the prime-
orce, by means of other forces which we know already. However, we
annot achieve this by changing basal friction and/or the viscous drag.
irst, it is not possible in a classical way with Coulomb friction. The
xact solution (41) is constructed by assuming that 𝛼 does not vary
long the slope, while the -force, −𝑓𝑥, by nature, does. The same is
rue for the drag force. Second, even by spatially varying the Coulomb
riction (i.e., 𝛿) and/or the viscous drag (𝛽), the motion, as controlled
y the prime-force in (39), cannot be achieved to precisely reproduce
he observed run-out distance. Physically, 𝛿 is bounded from above,
o often it is not able to control the motion in an appreciable way.
oreover, by definition, the viscous drag cannot bring the motion to
halt. But now, we can formally accommodate any additional energy

issipation mechanism in the -force accomplishing the observed effect
ather than changing the Coulomb friction, whose value (as mentioned
bove) is often used arbitrarily in simulation to fit the data, or it does
ot exhibit any admirable effect.

For granular, debris and particle-laden flows, several situations may
rise where the dissipative (or anti-dissipative) force can increase (or
ecrease) as the mass moves downslope. There can be several factors
iding to the prime force. I mention some possible scenarios that may
ontribute to the spatial rate of the prime-force, i.e., 𝑓 . (𝑖) Often the
ebris flow heads and lateral flanks become more and more granular
ominated, or frictionally stronger due to phase-separation and/or
article sorting. These are observed phenomena [32,33,37,49]. (𝑖𝑖) The
ollisional and viscous dissipations can increase as flow moves on,
.g., by added particles and fines (the situation prevails due to basal
rosion and entrainment) and increased agitations [1,32,50,51]. The
iscous resistance can also increase due to added fragmented fine parti-
les, e.g., in rock-ice avalanche motion [52]. (𝑖𝑖𝑖) The energy dissipation
ay increase in the downstream as the flow transits, e.g., from the

lacial surface to the gravel-rich, or the rough moraine surface. (𝑖𝑣)
etailed topographic effects [38], that could not be resolved otherwise,
ay also be included as an energy dissipation mechanism.

In reality, the prime-force coefficient, 𝑓 , can be a complex function
f some or all of those physical phenomena described above, and any
ther permissible circumstances associated with the dissipative mass
lows with the rate of dissipative forces along the slope. Its admissible
orms are yet to be determined. Still, 𝑓 could also be constrained
rom laboratory experiments or from the field data with respect to
he observed dynamics and the run-out. Alternatively, the practitioners
ay ascertain 𝑓 in empirically adequate ways, if they prefer to do so.
his adds an additional uncertain parameter to the simulations, besides
he existing ones. This may make parameter calibration and predictive
imulations even more difficult, but helping to control the landslide as
bserved. However, I mention that, as the prime-force is a new concept,
urther intensive research would help to boost its clarity and expedite
ts practical applications.
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Analytical solution presented in (41) formally proves that the new
dissipative force appreciably controls the motion and runout. Depend-
ing on its sign, it can enhance or control the motion, equivalently,
stretch (Fig. 2) or reduce (Fig. 3) the travel distance (or coverage
area). With this, we can now formally include the new dissipative
force −𝑓𝑥 (similarly in other directions) in the list of forces in the
momentum balance Eqs. (15), and implement the prime-force in any
simulation of mass flow. There are some technical aspects to consider
while implementing the new force in computing. (𝑖) Note that, 𝑓 are
relatively small numbers. (𝑖𝑖) In general, we can have different 𝑓 for
different phases. (𝑖𝑖𝑖) Because of the possible directional inhomogeneity,
𝑓 can be different in 𝑥 and 𝑦 directions, say 𝑓𝑥 and 𝑓𝑦. (𝑖𝑣) We
can formally include −𝛼𝑠𝑓𝑥𝑥 in the list of forces in (16a), say at the
end of it, similar for (16b) and (16c) with 𝛼𝑓𝑠 and 𝛼𝑓 . (𝑣) For the 𝑦-
direction for solid, we should use −𝛼𝑠𝑓𝑦𝑦, but we should remember
that the outward directions are the increasing directions. Similar for
other phases in 𝑦-direction. So, in principle, the prime-force can be
relatively easily included in any computational softwares, such as the
r.avaflow [39,53] in a straightforward way.

5. A simple dispersion equation

Reducing the sophistication, I consider a geometrically two-
dimensional motion down a slope. Furthermore, assume that the rel-
ative velocity between coarse and fine-solid particles (𝑢𝑠, 𝑢𝑓𝑠) and the
fluid phase (𝑢𝑓 ) in the landslide (debris) material is negligible, that is,
𝑢𝑠 ≈ 𝑢𝑓𝑠 ≈ 𝑢𝑓 =∶ 𝑢, and so is the viscous deformation of the fluid. This
means, for simplicity, we are considering an effectively single-phase
mixture (consisting of solid particles composed of coarse solid and fine-
solid, and viscous fluid) flow [44,51]. Then, by summing up the mass
and momentum balance equations in Section 2.2, I obtain a single mass
and momentum balance equation describing the motion of a landslide
(or a mass flow) including non-hydrostatic contributions as:
𝜕ℎ
𝜕𝑡

+ 𝜕
𝜕𝑥

(ℎ𝑢) = 0, (43)

𝜕
𝜕𝑡
(ℎ𝑢) + 𝜕

𝜕𝑥

[

ℎ
{

𝑢2 +
(

𝛼𝑠𝛽𝑠 + 𝛼𝑠𝛽𝑓
) ℎ
2
+
(

𝛼𝑠𝑠 + 𝛼𝑓𝑓
)

}]

= ℎ𝑆, (44)

where,

𝛼𝑓 =
(

1 − 𝛼𝑠
)

,

𝛼𝑠𝛽𝑠 + 𝛼𝑓 𝛽𝑓 =
[(

1 − 𝛾𝑓𝑠
)

𝐾𝑠𝛼𝑠 +
(

1 − 𝛼𝑠
)]

𝑔𝑧 +
[

𝛼𝑠
(

𝐾𝑠 − 1
)

+ 1
]

×
(𝐷𝑤̄
𝐷𝑡

+ 𝐶𝑠
𝐷𝑉

𝑤̄𝑢
)

,

𝛼𝑠𝑠 + 𝛼𝑓𝑓 = ℎ2

12
[

𝛼𝑠
(

𝐾𝑠 − 1
)

+ 1
]

×
{

( 𝜕𝑢
𝜕𝑥

)2
− 𝐷

𝐷𝑡

( 𝜕𝑢
𝜕𝑥

)

− 2𝐶𝑠
𝐷𝑉

𝑢 𝜕𝑢
𝜕𝑥

}

,

𝑆 = 𝑔𝑥 − 𝜇𝑠𝛼𝑠
{

(

1 − 𝛾𝑓𝑠
)

𝑔𝑧 + 𝐷𝑤̄
𝐷𝑡

+ 𝐶𝑠
𝐷𝑉

𝑤̄𝑢
}

− 𝛼𝑠
{

𝛾𝑓𝑠 𝑔
𝑧 + 𝐷𝑤̄

𝐷𝑡
+ 𝐶𝑠

𝐷𝑉
𝑤̄𝑢

} 𝜕ℎ
𝜕ℎ

− 𝐶𝑠
𝐷𝑉

𝑢2,

are the fluid fraction in the mixture, the coefficient emerging from
the hydraulic pressure gradients for the solid and fluid including the
enhanced effects due to non-hydrostatic contributions, the dispersion
contributions emerging from the non-hydrostatic consideration, and the
source containing different forces. Together with the mass balance (43),
the momentum balance (44) can be written as:
𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

+
[{((

1 − 𝛾𝑓𝑠
)

𝐾𝑠 + 𝛾𝑓𝑠
)

𝛼𝑠 +
(

1 − 𝛼𝑠
)}

𝑔𝑧

+ 𝛼𝑠
{( 𝜕

𝜕𝑡
+ 𝑢 𝜕

𝜕𝑥

)

𝑤̄ + 𝐶𝑠
𝐷𝑉

𝑤̄𝑢
}] 𝜕ℎ

𝜕𝑥

1 𝜕
[

{

𝛼𝑠
(

𝐾𝑠 − 1
)

+ 1
}

[

ℎ3
{

( 𝜕𝑢 )2
− 𝜕 𝜕𝑢 − 𝑢 𝜕

2𝑢 − 2𝐶𝑠 𝑢 𝜕𝑢
}

ℎ 𝜕𝑥 12 𝜕𝑥 𝜕𝑥 𝜕𝑡 𝜕𝑥2 𝐷𝑉 𝜕𝑥 l

12
+ ℎ2

2

{( 𝜕
𝜕𝑡

+ 𝑢 𝜕
𝜕𝑥

)

𝑤̄ + 𝐶𝑠
𝐷𝑉

𝑤̄𝑢
}

]]

𝑔𝑥 − 𝜇𝑠𝛼𝑠
[

(

1 − 𝛾𝑓𝑠
)

𝑔𝑧 +
{( 𝜕

𝜕𝑡
+ 𝑢 𝜕

𝜕𝑥

)

𝑤̄ + 𝐶𝑠
𝐷𝑉

𝑤̄𝑢
}]

− 𝐶𝑠
𝐷𝑉

𝑢2. (45)

The second term on the left hand side of (45) describes the ad-
vection, while the third term (in the square bracket) describes the
extent of the local deformation that stems from the hydraulic pressure
gradient of the free-surface of the landslide in which

(

1 − 𝛼𝑠
)

𝑔𝑧𝜕ℎ∕𝜕𝑥
emerges from the hydraulic pressure gradient associated with possible
interstitial fluids in the landslide, and the terms associated with 𝑤̄ are
the components from enhanced gravity. The fourth term on the left
hand side are extra contributions in the flux due to the non-hydrostatic
contributions. Moreover, the third term on the left hand side and the
other terms on the right hand side in the momentum equation (45)
represent all the involved forces. The first and second terms on the
right hand side of (45) are the gravity acceleration, effective Coulomb
friction that includes lubrication

(

1 − 𝛾𝑓𝑠
)

, liquefaction
(

𝛼𝑠
)

(because,
if there is no, or substantially low amount of solid, the mass is fully
liquefied, e.g., lahar flows), the third term with 𝑤̄ emerges from en-
hanced gravity, and the fourth term is the viscous drag, respectively.
Note that the term with 1−𝛾𝑓𝑠 or 𝛾𝑓𝑠 originates from the buoyancy effect.
By setting 𝛾𝑓𝑠 = 0 and 𝛼𝑠 = 1, we obtain a dry landslide, grain flow, or an
avalanche motion. However, I keep 𝛾𝑓𝑠 and 𝛼𝑠 also to include possible
fluid effects in the landslide (mixture).

Note that for 𝐾𝑠 = 1 (which may prevail for extensional flows, [44]),
the third term on the left hand side associated with 𝜕ℎ∕𝜕𝑥 simplifies
drastically, because

{((

1 − 𝛾𝑓𝑠
)

𝐾𝑠 + 𝛾𝑓𝑠
)

𝛼𝑠 +
(

1 − 𝛼𝑠
)

}

becomes unity.
So, the isotropic assumption (i.e., 𝐾𝑠 = 1) loses some important
information about the solid content and the buoyancy effect in the
mixture.

5.1. A landslide dispersion equation

For simplicity, I introduce the notations as: 𝑏 =
{

𝛼𝑠
(

𝐾𝑠 − 1
)

+ 1
}

,
𝛼 =

[

𝑔𝑥 −
(

1 − 𝛾𝑓𝑠
)

𝛼𝑠𝜇𝑠𝑔𝑧
]

, and 𝛽 = 𝐶𝑠
𝐷𝑉

. Here, 𝑏, 𝛼 and 𝛽 are the
pressure parameter, net driving force and the viscous drag coefficient,
respectively. Assume that the time-dependent terms in (45) can be
ignored in relation to other terms. Moreover, let ℎ𝑢 =  be a typical
flux, and 𝜕𝑢∕𝜕𝑥 is a small quantity such that (𝜕𝑢∕𝜕𝑥)2 is negligible.
Consider the definition of 𝑤̄ from (4). Then, with a long wave approx-
imation (suppose that ℎ can be approximated by a constant, or simply
parameterize it, ℎ = ℎ0), the momentum balance (45) can be reduced
to yield a third-order inhomogeneous non-linear ordinary differential
equation in 𝑢 with parameters 𝑃 ,𝑆1,𝑆2, 𝛼, 𝛽:

𝑃
𝜕3𝑢
𝜕𝑥3

+𝑆1
𝜕2𝑢
𝜕𝑥2

+
(

𝑢 +𝑆2
) 𝜕𝑢
𝜕𝑥

= 𝛼 − 𝛽𝑢2, (46)

here, 𝑃 = ±1
3
𝑏ℎ0 , 𝑆1 = ±1

2

[ 5
6
𝛽𝑏ℎ0 + 𝜇𝑠𝛼𝑠

]

 , 𝑆2 = ±1
2
𝜇𝑠𝛽𝛼𝑠

are associated with dispersion. Here, the ± sign correspond to the
primarily expanding or contracting flows, which can be obtained by
separately analyzing the dispersive contributions in (45). I call (46)
the landslide dispersion equation in which 𝑃 plays the primary role
as it is associated with the highest order term therein, while 𝑆1 and

𝑆2 play the secondary role. So, 𝑃 is termed as the prime dispersion
arameter. This is a simple, yet very interesting, dispersion equation
hat characterizes the dispersion effect in the mass flow.

.2. Solution to the dispersion equation (46)

The effect of dispersion in (46) is analyzed in detail. Without the dis-
ersive terms, (46) is the simple steady-state landslide velocity model
eveloped in Pudasaini and Krautblatter [44]. I numerically solved (46)
ith the boundary conditions 𝑢(0) = 0.0, 𝜕𝑢

𝜕𝑥
(0) = 0.5, 𝜕

2𝑢
𝜕𝑥2

(0) = 0.0. The
ast two conditions are additionally required due to dispersion related
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Fig. 4. The landslide velocity distribution with dispersion
(

𝑃 = 327,𝑆1 = 17,
𝑆2 = 0.03

)

and without dispersion
(

𝑃 = 0.0,𝑆1 = 0.0,𝑆2 = 0.0
)

described by (46).
ith dispersion , depending on its magnitude, the landslide behaves fundamentally

ifferently by producing meanders of variable intensities around the reference state
ithout dispersion.

ynamics. All conditions can be fixed based on the physics of the un-
erlying problem. The results are shown in Fig. 4 both with dispersion,
𝑃 = 327,𝑆1 = 17,𝑆2 = 0.03 (representing a realistic situation with
= 1.0, ℎ0 = 7.0, = 140, 𝛼𝑠 = 0.65, 𝜇𝑠 = 0.36

(

𝛿𝑠 = 20◦
)

, 𝛼 = 7.0, 𝛽 =
.0019), and without dispersion effects (𝑃 = 0.0,𝑆1 = 0.0,𝑆2 = 0.0).
o demonstrate the influence of dispersion parameters  on the dynam-

cs, I have amplified, downplayed, or ignored their values with different
cales as 2.0×, 1.0×, 0.1×, 0.0×, where the last value corresponds
o the neglection of all dispersion effects. Fig. 4 clearly reveals funda-
ental effects of dispersion on the landslide dynamics. Moreover, the

elocity distribution with dispersion is more complex due to its associa-
ion with the higher-order derivative terms in (46). Dispersion produces
wavy velocity field of changing intensity about the simple reference

tate without dispersion. Local surge developments and attenuations as
ell as enhanced or hindered motions are often observed dynamical

pectacles in landslides and debris avalanches. Such explicit description
f the dispersive wave is the first of this kind for the avalanching debris
ass. Once the landslide is triggered, the dispersive solution deviates

ignificantly away from the non-dispersive one. However, after a suf-
iciently long distance, the dispersive solution tends to approach the
on-dispersive state given by (41) with 𝑢 = 0. Yet, significantly differ-
nt scenarios can be generated with other sets of dispersion parameters.
lternatively, as 𝑃 → 0.0,𝑆1 → 0.0,𝑆2 → 0.0, the dispersive wave
oincides with the non-dispersive elementary solution. This proves the
onsistency of our model and also highlights the essence of dispersion
n mass transport.

.3. Influence of the solid volume fraction in dispersion

The solid volume fraction 𝛼𝑠 is the key (physical) parameter in
he mixture that governs the landslide motion and deformation. The
trength of the landslide material is directly related to 𝛼𝑠. The solid vol-
me fraction influences the parameters 𝑃 ,𝑆1,𝑆2 and 𝛼 in the dis-
ersion equation (46). So, here I analyze how the solid volume fraction
egulates the landslide dispersion. Landslide velocity distributions with
ispersion for different solid volume fractions in the mixture are pre-
ented in Fig. 5. Dispersion is minimum for the fully dry material, and
aximum for the vanishing solid fraction, akin to the fluid flow. The
ispersion intensity increases energetically as the solid volume fraction
ecreases. This reveals that dispersion is related to the fluidness of the
aterial. However, for higher values of 𝛼𝑠 dispersion becomes weaker

nd weaker far downstream as compared to that near the source region.

.4. Influence of the basal friction in dispersion

The basal friction angle 𝛿 is a dominant physical parameter con-
rolling the landslide dynamics. As for the solid volume fraction, the
13
Fig. 5. Landslide velocity distributions with dispersion described by (46) for different
solid volume fractions 𝛼𝑠 in the landslide mixture. Dispersion increases firmly with
decreasing solid volume fraction.

Fig. 6. Landslide velocity distributions with dispersion described by (46) for different
basal friction angles 𝛿. Dispersion increases strongly with decreasing basal friction
angle.

weaker material is associated with the lower friction angle. However,
unlike the solid volume fraction, basal friction influences only 𝑆1,𝑆2
and 𝛼 in the dispersion equation (46), but not 𝑃 . Landslide velocity
distributions with dispersion for different frictions in the mixture are
presented in Fig. 6. Dispersion increases strongly with decreasing values
of 𝛿, with highest dispersion taking place for the motion of a frictionless
material (𝛿 = 0◦), akin to a fluid flow. However, for higher values of
, dispersion becomes relatively weaker as the landslide continues to
ropagate downstream.

Both the solid volume fraction and the friction angle define the
echanical responses of the landslide material against the applied

orces, and govern the landslide motion and deformation. However,
hey regulate the landslide dynamics fundamentally differently, so are
he dispersions with changing solid fractions and the basal frictions.
hese facts are demonstrated in Figs. 5 and 6. Although at the first
lance, they look similar, the dispersion intensity is higher with the
hange of the basal friction as compared to that with the solid volume
raction. This can be explained, because basal fiction is the main phys-
cal parameter determining the landslide dynamics. These results are
n line with our intuition and experience, and indicate the consistency
f my model. This also sheds light on the physical significance of the
imple dispersion model derived here.

. Summary

I considered the multi-phase mass flow model by Pudasaini and
ergili [1] and extended it by including the non-hydrostatic con-

ributions. This produces a novel non-hydrostatic multi-phase mass
low model. Effective normal stresses are constructed for all the solid,
ine-solid and fluid phases in the mixture from the normal stress
omponents, which include the interfacial momentum transfers such
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as buoyancy, drag and virtual mass forces. Depending on the nature
of the components in the effective normal stresses, the normal loads
are separated into the enhanced gravity and dispersion, which, respec-
tively, correspond to the acceleration in the flow depth direction and
mass fluxes associated with the slope parallel directions. While drag
and virtual mass forces appear in both, buoyancy is present only in
the enhanced gravity for solid and fine-solid because it is associated
with the reduced normal load of the solid particles in the mixture. As
enhanced gravity and dispersion both emerge from the effective normal
load, these enter into the lateral momentum fluxes via the hydraulic
pressure gradients and additionally introducing the dispersion effects.
This resulted in a complex and highly non-linear new contributions in
the momentum fluxes. This may pose a challenge in solving the model
equations. This is mainly due to the involvement of time derivatives
in fluxes that appear in dispersion, and also in the enhanced gravity.
To reduce the complexity, I have also presented some simplifications
and approximations for the time derivatives appearing in the enhanced
non-hydrostatic contributions. Similarly, I have presented analysis of
the dispersion relations showing the role of the drag force. I discussed
some special situations where the non-hydrostatic dispersive effects
are more pronounced in multi-phase particle–fluid mixture mass flows
than in single-phase flows. I proved that negligible dispersion leads to
the generalization of the existing inviscid, dissipative Burgers’ equation
with source term. Simplified models are presented that can help in solv-
ing the equations with reduced complexity. Reduced models already
appeared to be important generalizations and extensions of several
mass flow models available in the literature. I formally postulated a
novel, spatially varying dissipative (or anti-dissipative) force, called
the prime-force. The practitioners and engineers may find the prime-
force very useful in solving technical problems as it precisely controls
the dynamics, run-out and deposition of mass flows. The need of
formally including this new, physically-founded force in momentum
balance equations are elucidated. I constructed a simple dispersion
model and its solution that highlighted the essence of dispersion on
the flow dynamics. I have consistently demonstrated that dispersion
produces a wavy velocity field around the reference state without
dispersion. The results show that dispersion increases strongly as the
solid volume fraction and the basal friction decreases. The explicit
description of dispersive waves and their control by the solid volume
fraction and basal friction are seminal understanding in mass flows. So,
this contribution sets a foundation for a more complete and general
simulation of non-hydrostatic dispersive, multi-phase mass flows.
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Appendix

The expressions and discussions below are mainly based on Puda-

saini and Mergili [1].

14
A. The drag coefficients are given by:

𝐶𝑠,𝑓
𝐷𝐺 =

𝛼𝑠𝛼𝑓
(

1 − 𝛾𝑓𝑠
)

𝑔
[

 𝑠,𝑓
𝑇

{

𝑠,𝑓 𝑠,𝑓
(

𝑅𝑒𝑠,𝑓𝑝
)

+
(

1 − 𝑠,𝑓
)

𝑠,𝑓
(

𝑅𝑒𝑠,𝑓𝑝
)}

+ 𝑠,𝑓


]𝑗 , (A.1a)

𝑠,𝑓𝑠
𝐷𝐺 =

𝛼𝑠𝛼𝑓𝑠
(

1 − 𝛾𝑓𝑠𝑠

)

𝑔
[

 𝑠,𝑓𝑠
𝑇

{

𝑠,𝑓𝑠 𝑠,𝑓𝑠
(

𝑅𝑒𝑠,𝑓𝑠𝑝

)

+
(

1 − 𝑠,𝑓𝑠
)

𝑠,𝑓𝑠
(

𝑅𝑒𝑠,𝑓𝑠𝑝

)}

+ 𝑠,𝑓𝑠


]𝑗 ,

(A.1b)

𝐶𝑓𝑠,𝑓
𝐷𝐺 =

𝛼𝑓𝑠𝛼𝑓
(

1 − 𝛾𝑓𝑓𝑠
)

𝑔
[

 𝑓𝑠,𝑓
𝑇

{

𝑓𝑠,𝑓𝑓𝑠,𝑓
(

𝑅𝑒𝑓𝑠,𝑓𝑝

)

+
(

1 − 𝑓𝑠,𝑓
)

𝑓𝑠,𝑓
(

𝑅𝑒𝑓𝑠,𝑓𝑝

)}

+ 𝑓𝑠,𝑓


]𝑗 ,

(A.1c)

where, in (A.1a), 𝑠,𝑓 ∈ (0, 1) is a function of the solid volume fraction
𝑠,𝑓 = 𝛼𝑚𝑠 , where 𝑚 is a positive number, close to 1, combines the
fluid-like,  𝑠,𝑓 = 𝛾𝑓𝑠

(

𝛼𝑓𝑠
)3 𝑅𝑒𝑠,𝑓𝑝 ∕180, and solid-like, 𝑠,𝑓 = 𝛼𝑀

𝑠,𝑓−1
𝑓 , drag

contributions between solid and fluid components in three-phase mass
flows;  𝑠,𝑓

𝑇 is the terminal velocity of a particle falling through the
fluid, 𝑗 = 1 or 2 is selected according to whether linear or quadratic
drag coefficients are used, and 𝑀𝑠,𝑓 = 𝑀𝑠,𝑓

(

𝑅𝑒𝑠,𝑓𝑝
)

depends on the
particle Reynolds number 𝑅𝑒𝑠,𝑓𝑝 = 𝜌𝑓𝑑𝑠  𝑠,𝑓

𝑇 ∕𝜂𝑓 [8,54]. Furthermore,
𝑑𝑠 is particle diameter, 𝛾𝑓𝑠 = 𝜌𝑓∕𝜌𝑠 is the fluid to solid density ratio,
and 𝛼𝑓𝑠 = 𝛼𝑓∕𝛼𝑠 is the fluid to solid fraction ratio.

𝑠,𝑓
 =

(

𝑠,𝑓

𝛼𝑠
+ 1 − 𝑠,𝑓

𝛼𝑓

)

𝑠,𝑓 in (A.1a) is called the smoothing

unction, where 𝑠,𝑓 = |𝛼𝑠𝐮𝑠 + 𝛼𝑓𝐮𝑓 | is determined by the mixture mass
lux per unit mixture density, typically 𝑠,𝑓 = 10 ms−1. The emergence
f 𝑠,𝑓

 in (A.1a) is crucial for the broad structure of the generalized
rag that removes the singularity from the existing drag coefficients.
ith this, (A.1a) is called the enhanced generalized drag in mixture
ass flows. This fully describes the drag for any values of the solid

olume fraction 𝛼𝑠. Similar discussions hold for the other drags 𝐶𝑠,𝑓𝑠
𝐷𝐺

nd 𝐶𝑓𝑠,𝑓
𝐷𝐺 .

B. The virtual mass induced mass and momentum enhancements
or the solid-phase due to fluid and the fine-solid are denoted by 𝑢𝑣𝑚𝑠
nd 𝑢𝑢𝑣𝑚𝑠 , 𝑢𝑣𝑣𝑚𝑠 , and are written as:

𝑣𝑚
𝑠 = 𝛾𝑓𝑠 

𝑠,𝑓 (

𝑢𝑓 − 𝑢𝑠
)

+ 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝑢𝑓𝑠 − 𝑢𝑠
)

, (A.2a)

𝑢𝑣𝑚𝑠 = 𝛾𝑓𝑠 
𝑠,𝑓

(

𝑢2𝑓 − 𝑢2𝑠
)

+ 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠
(

𝑢2𝑓𝑠 − 𝑢2𝑠
)

, (A.2b)

𝑢𝑣𝑣𝑚𝑠 = 𝛾𝑓𝑠 
𝑠,𝑓 (

𝑢𝑓 𝑣𝑓 − 𝑢𝑠𝑣𝑠
)

+ 𝛾𝑓𝑠𝑠 𝑠,𝑓𝑠 (𝑢𝑓𝑠𝑣𝑓𝑠 − 𝑢𝑠𝑣𝑠
)

. (A.2c)

The virtual mass force coefficient 𝑠,𝑓 in (A.2) is given by (Puda-
aini, 2019):

𝑠,𝑓 =
 0

𝑣𝑚(𝓁 + 𝛼𝑛𝑠 ) − 1

𝛼𝑠∕𝛼𝑓 + 𝛾𝑓𝑠
, (A.3)

here 𝑣𝑚 is the virtual mass number, and 𝓁 and 𝑛 are some numerical
arameters. This model covers any distribution of the dispersive phase
dilute to dense distribution of the solid particles) that evolves auto-
atically as a function of solid volume fraction. The physically most

elevant values for the parameters can be:  0
𝑣𝑚 = 10, 𝓁 = 0.12 and

= 1. The other virtual mass force coefficients 𝑠,𝑓𝑠 and 𝑓𝑠,𝑓 can be
onstructed from (A.3). Similarly, the virtual mass force induced mass
nd momentum enhancements for the fine-solid and fluid phases are
iven by:

𝑣𝑚
𝑓𝑠 = 𝛾𝑓𝑓𝑠

𝑓𝑠,𝑓 (

𝑢𝑓 − 𝑢𝑓𝑠
)

− 𝛼𝑠𝑓𝑠
𝑠,𝑓𝑠 (𝑢𝑓𝑠 − 𝑢𝑠

)

, (A.4a)

𝑢𝑣𝑚 = 𝛾𝑓 𝑓𝑠,𝑓
(

𝑢2 − 𝑢2
)

− 𝛼𝑠 𝑠,𝑓𝑠
(

𝑢2 − 𝑢2
)

, (A.4b)
𝑓𝑠 𝑓𝑠 𝑓 𝑓𝑠 𝑓𝑠 𝑓𝑠 𝑠

https://arxiv.org/pdf/2203.02008.pdf
https://arxiv.org/pdf/2203.02008.pdf
https://arxiv.org/pdf/2203.02008.pdf
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𝑢𝑣𝑣𝑚𝑓𝑠 = 𝛾𝑓𝑓𝑠
𝑓𝑠,𝑓 (

𝑢𝑓 𝑣𝑓 − 𝑢𝑓𝑠𝑣𝑓𝑠
)

− 𝛼𝑠𝑓𝑠
𝑠,𝑓𝑠 (𝑢𝑓𝑠𝑣𝑓𝑠 − 𝑢𝑠𝑣𝑠

)

, (A.4c)

and

𝑢𝑣𝑚𝑓 = 𝛼𝑠𝑓
𝑠,𝑓 (

𝑢𝑓 − 𝑢𝑠
)

+ 𝛼𝑓𝑠𝑓 𝑓𝑠,𝑓 (

𝑢𝑓 − 𝑢𝑓𝑠
)

, (A.5a)

𝑢𝑢𝑣𝑚𝑓 = 𝛼𝑠𝑓
𝑠,𝑓

(

𝑢2𝑓 − 𝑢2𝑠
)

+ 𝛼𝑓𝑠𝑓 𝑓𝑠,𝑓
(

𝑢2𝑓 − 𝑢2𝑓𝑠
)

, (A.5b)

𝑣𝑣𝑚𝑓 = 𝛼𝑠𝑓
𝑠,𝑓 (

𝑢𝑓 𝑣𝑓 − 𝑢𝑠𝑣𝑠
)

+ 𝛼𝑓𝑠𝑓 𝑓𝑠,𝑓 (

𝑢𝑓 𝑣𝑓 − 𝑢𝑓𝑠𝑣𝑓𝑠
)

, (A.5c)

espectively, where, 𝛼𝑠𝑓𝑠 = 𝛼𝑠∕𝛼𝑓𝑠, 𝛼𝑠𝑓 = 𝛼𝑠∕𝛼𝑓 and 𝛼𝑓𝑠𝑓 = 𝛼𝑓𝑠∕𝛼𝑓 are
the fraction ratios. By consistently replacing 𝑢 by 𝑣 in (A.2)–(A.5), we
obtain the virtual mass induced mass and momentum enhancements in
the 𝑦-direction.

C. The 𝑥-directional fluid-type basal shear stresses in the 𝑥𝑧-
plane are given, either by the no-slip condition (for both the fluid, and
fine-solid):
[ 𝜕𝑢𝑓
𝜕𝑧

]

𝑏
= 𝜒𝑢𝑓

𝑢𝑓
ℎ
,
[ 𝜕𝑢𝑓𝑠

𝜕𝑧

]

𝑏
= 𝜒𝑢𝑓𝑠

𝑢𝑓𝑠
ℎ

, (A.6)

or by the no-slip condition for fluid, and the Coulomb-slip condition for
fine-solid:
[ 𝜕𝑢𝑓
𝜕𝑧

]

𝑏
= 𝜒𝑢𝑓

𝑢𝑓
ℎ
,
[ 𝜕𝑢𝑓𝑠

𝜕𝑧

]

𝑏
=

𝐶𝐹
𝑢𝑓𝑠

𝜈𝑒𝑓𝑠
𝑝𝑓𝑠 + 2𝐶𝐹

𝑢𝑓𝑠

𝜕𝑢𝑓𝑠
𝜕𝑥

, (A.7)

with the Coulomb friction coefficient 𝐶𝐹
𝑢𝑓𝑠

= −𝑢𝑓𝑠∕|𝐮𝑓𝑠| tan 𝛿𝑓𝑠, where
𝛿𝑓𝑠 is the basal friction angle for the fine-solid. The parameters 𝜒𝑢𝑓 and
𝜒𝑢𝑓𝑠 in (A.6) and (A.7) model the possible velocity distributions of the
respective phases in the 𝑥𝑧-plane normal to the sliding surface.

D. The viscous stresses associated with 𝜈𝑒𝑓𝑠 and 𝜈𝑒𝑓 in (16b)–
(16c) are related to the Newtonian-type viscous stresses. They include
pressure, rate, yield strength and friction, see below.

E. The effective fluid and fine-solid kinematic viscosities are
given by:

𝜈𝑒𝑓 = 𝜈𝑓 +
𝜏𝑦𝑓
‖𝐃𝑓‖

[

1 − exp
(

−𝑟𝑦‖𝐃𝑓‖
)]

,

𝜈𝑒𝑓𝑠 = 𝜈𝑓𝑠 +
𝜏𝑦𝑓𝑠

‖𝐃𝑓𝑠‖

[

1 − exp
(

−𝑟𝑦‖𝐃𝑓𝑠‖
)]

,
(A.8)

where 𝜏𝑦𝑓 and 𝜏𝑦𝑓𝑠 are the corresponding yield stresses, 𝑟𝑦 are the
parameters for regularization, and 𝜏𝑦𝑓𝑠 = sin𝜙𝑓𝑠𝑝𝑓𝑠, and, 𝐃𝑓 is the
eviatoric strain-rate tensor for fluid. In the viscosities (A.8), the depth-
veraged norm of 𝐃𝑓 is obtained as:

𝐃𝑓‖ =
|

|

|

|

|

4
𝜕𝑢𝑓
𝜕𝑥

𝜕𝑣𝑓
𝜕𝑦

−
( 𝜕𝑢𝑓

𝜕𝑦
+

𝜕𝑣𝑓
𝜕𝑥

)2

−
([ 𝜕𝑢𝑓

𝜕𝑧

]

𝑏

)2

−
([ 𝜕𝑣𝑓

𝜕𝑧

]

𝑏

)2
|

|

|

|

|

1∕2

,

(A.9)

𝐃𝑓‖ is given by the second invariant (𝐼𝐼𝐃𝑓
) of the deviatoric strain-

ate tensor for fluid: ‖𝐃𝑓‖ =
√

𝐼𝐼𝐃𝑓
with, 𝐼𝐼𝐃𝑓

= 1
2

[

tr
(

𝐃𝑓
)2 − tr

(

𝐃2
𝑓

)]

he norm of the deviatoric strain-rate tensor for fine-solid, 𝐃𝑓𝑠, is
btained similarly.

Flow and No-flow regions: The yield criteria help to precisely
istinguish the flow and no-flow regions and depend on the rate of
eformation and the material strengths for both the fine-solid and fluid
hases. Both the fine-solid and fluid phases yield plastically if the
easures of the deviatoric stress tensors overcome the strengths of the
aterials. See, Pudasaini and Mergili [1] for more details.

F. The 𝑥-directional enhanced non-Newtonian viscous stress
ontribution (denoted by nN) for fine-solid due to the non-uniform
istribution of the solid particles in the fine-solid is given by:

𝑓𝑠𝑥
𝑛𝑁 = 𝑓𝑠,𝑠 {

2 𝜕
(

𝜈𝑒𝑓𝑠
𝜕𝛼𝑠 (𝑢𝑓𝑠 − 𝑢𝑠

)

)

𝛼𝑓𝑠 𝜕𝑥 𝜕𝑥
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+ 𝜕
𝜕𝑦

(

𝜈𝑒𝑓𝑠

(

𝜕𝛼𝑠
𝜕𝑥

(

𝑣𝑓𝑠 − 𝑣𝑠
)

+
𝜕𝛼𝑠
𝜕𝑦

(

𝑢𝑓𝑠 − 𝑢𝑠
)

))}

− 𝑓𝑠,𝑠

𝛼𝑓𝑠

𝜉𝑠𝛼𝑠𝜈𝑒𝑓𝑠
(

𝑢𝑓𝑠 − 𝑢𝑠
)

ℎ2
. (A.10)

Similarly, the enhanced non-Newtonian viscous stress contribution
for fluid due to the non-uniform distribution of the fine-solid and solid
particles in the fluid is given by:

𝜏𝑓
𝑥

𝑛𝑁 = 𝑓,𝑠

𝛼𝑓

{

2 𝜕
𝜕𝑥

(

𝜈𝑒𝑓
𝜕𝛼𝑠
𝜕𝑥

(

𝑢𝑓 − 𝑢𝑠
)

)

+ 𝜕
𝜕𝑦

(

𝜈𝑒𝑓

(

𝜕𝛼𝑠
𝜕𝑥

(

𝑣𝑓 − 𝑣𝑠
)

+
𝜕𝛼𝑠
𝜕𝑦

(

𝑢𝑓 − 𝑢𝑠
)

))}

− 𝑓,𝑠

𝛼𝑓

𝜉𝑠𝛼𝑠𝜈𝑒𝑓
(

𝑢𝑓 − 𝑢𝑠
)

ℎ2

+ 𝑓,𝑓𝑠

𝛼𝑓

{

2 𝜕
𝜕𝑥

(

𝜈𝑒𝑓
𝜕𝛼𝑓𝑠
𝜕𝑥

(

𝑢𝑓 − 𝑢𝑓𝑠
)

)

+ 𝜕
𝜕𝑦

(

𝜈𝑒𝑓

( 𝜕𝛼𝑓𝑠
𝜕𝑥

(

𝑣𝑓 − 𝑣𝑓𝑠
)

+
𝜕𝛼𝑓𝑠
𝜕𝑦

(

𝑢𝑓 − 𝑢𝑓𝑠
)

))}

− 𝑓,𝑓𝑠

𝛼𝑓

𝜉𝑓𝑠𝛼𝑓𝑠𝜈𝑒𝑓
(

𝑢𝑓 − 𝑢𝑓𝑠
)

ℎ2
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