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A B S T R A C T

Considering the non-hydrostatic mass flow model (Pudasaini, 2022 [1]), here, I derive a novel dispersive wave
equation for landslide. The new dispersive wave for landslide recovers the classical dispersive water waves
as a special case. I show that the frequency dispersion relation for landslide is inherently different than the
classical frequency dispersion for water waves. The wave frequency with dispersion increases non-linearly
as a function of the wave number. For dispersive landslide, the wave frequency without dispersion appears
to heavily overestimate the dispersive wave frequency for higher wave number. Due to the dispersion term
emerging from the non-hydrostatic contribution for landslide, the phase velocity becomes a function of the
wave number. This gives rise to the group velocity that is significantly different from the phase velocity,
characterizing the dispersive mass flow. The dispersive phase velocity and group velocity decrease non-linearly
with the wave number. Yet, the group velocity is substantially lower than the phase velocity. I analytically
derive a dispersion number as the ratio between the phase velocity and the group velocity, which measures
the deviation of the group velocity from the phase velocity, provides a dynamic scaling between them and
summarizes the overall effect of dispersion in the mass flow. The dispersion number for landslide increases
rapidly with the wave number, which is in contrast to the dispersion in water waves. With the definition of
the effective dispersive lateral stress, I prove the existence of an anti-restoring force in landslide. I reveal the
fact that due to the anti-restoring force, landslides are more dispersive than the piano strings. So, the wave
dispersion in landslide is fundamentally different than the wave dispersion in the piano string. My model
constitutes a foundation for the wave phenomenon in dispersive mass flows.
. Introduction

Landslides and debris avalanches consist of a mixture of granular
aterials and the fluid. There have been rapid advancements in model-

ng such mass movements as shallow flows [2–7]. Classically, modeling
eophysical flows is based on the hydrostatic, depth-averaged mass and
omentum balance equations [8]. However, in rapid mass flows down

nclined slopes the gravity and the vertical acceleration can have the
ame order of magnitude effects demanding for the non-hydrostatic
odel formulation [9,10].

The Boussinesq-type water wave theory is widely used in hydraulics
nd water wave simulations [11]. Following the work of Boussinesq
12,13], the free surface water flow simulations are generally based
n non-hydrostatic depth-averaged models. Fundamental further con-
ributions in including Boussinesq-type non-hydrostatic and dispersive
ffects in water waves are also due to Serre [14], Peregrine [15], Green
nd Naghdi [16], and Nwogu [17]. However, for shallow granular
lows, Denlinger and Iverson [9] included the effect of nonzero vertical
cceleration on depth-averaged momentum fluxes and stress states
hile modeling granular flows across irregular terrains. This was later
xtended by Castro-Orgaz et al. [10] resulting in the novel Boussinesq-
ype theory for granular flows. Yuan et al. [18] advanced further

E-mail address: shiva.pudasaini@tum.de.

by presenting a refined and more complete non-hydrostatic shallow
granular flow model.

Pudasaini [1] extended and utilized the above mentioned ideas to
the multi-phase mass flow model [7] to generate a non-hydrostatic
Boussinesq-type gravity wave model for multi-phase mass flows. The
new non-hydrostatic multi-phase mass flow model includes enhanced
gravity and dispersive effects as in the single-phase models by Den-
linger and Iverson [9], Castro-Orgaz et al. [10] and Yuan et al. [18].
However, the Pudasaini [1] model further includes interfacial momen-
tum transfers in the non-hydrostatic Boussinesq-type model formulation
representing the complex multi-phase nature of mass flow.

Here, I consider the non-hydrostatic multi-phase mass flow model
[1] and reduce its complexity to a geometrically two-dimensional
landslide motion as a mixture of solid particles and fluid down a
slope. Then, I derive a novel dispersive wave equation for the landslide
motion as a complex partial differential equation. The new equation
reduces to the simple classical wave equation. The landslide disper-
sion relation includes different physical parameters and mechanical
responses. I show that the frequency dispersion relation for landslide
is essentially different than the classical frequency dispersion for water
waves. As the dispersion originates from the non-hydrostatic contri-
bution for landslide, the phase velocity becomes a function of the
ttps://doi.org/10.1016/j.ijnonlinmec.2023.104349
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wave number, resulting in the significantly different group velocity
than the phase velocity revealing an impressive relation between them.
The dispersive group velocity is substantially lower than the phase
velocity as both decrease non-linearly with the wave number. Analyt-
ically derived dispersion number measures the departure of the group
velocity from the phase velocity, and encapsulates the overall effect
of dispersion in the landslide wave dynamics. In contrast to the water
wave the dispersion number for landslide increases rapidly with the
wave number. Existence of an anti-restoring force in landslide proves
that landslides are more dispersive than the piano strings. These are
new understanding for the dispersive landslide motions.

2. A dispersive wave equation for mass flow

2.1. Balance equations for mass flow

A geometrically two-dimensional motion down a slope is consid-
ered. Let 𝑡 be time, (𝑥, 𝑧) be the coordinates and (𝑔𝑥, 𝑔𝑧) the gravity
accelerations along and perpendicular to the slope, respectively. Let,
ℎ and 𝑢 be the flow depth and the mean flow velocity of the landslide
along the slope. Similarly, 𝛾, 𝛼𝑠, 𝜇 be the density ratio between the fluid
and the particles

(

𝛾 = 𝜌𝑓∕𝜌𝑠
)

, volume fraction of the solid particles
(coarse and fine solid particles), and the basal friction coefficient (𝜇 =
tan 𝛿, where 𝛿 is the basal friction angle of the solid particles) in the
mixture material. Furthermore, 𝐾 is the earth pressure coefficient, and
𝐶𝐷𝑉 is the viscous drag coefficient.

I start with the non-hydrostatic multi-phase mass flow model [1].
The model considers the vertical momentum equation, assumes the
shallowness of the flow depth and the constant velocity profiles of the
horizontal velocity components. It incorporates the enhanced gravities
and the dispersion relations and signifies the highly non-linear, non-
hydrostatic (dispersion) contributions. Reducing the sophistication, I
consider a landslide motion as an effectively single-phase mixture of
solid particles and fluid down a slope. This leads to a single mass and
momentum balance equation describing the motion of a landslide (or
a mass flow) with the non-hydrostatic contributions as [1]:
𝜕ℎ
𝜕𝑡

+ 𝜕
𝜕𝑥

(ℎ𝑢) = 0, (1)

𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

+
[{

((1 − 𝛾)𝐾 + 𝛾) 𝛼𝑠 +
(

1 − 𝛼𝑠
)}

𝑔𝑧

+ 𝛼𝑠
{( 𝜕

𝜕𝑡
+ 𝑢 𝜕

𝜕𝑥

)

𝑤 + 𝐶
𝐷𝑉

𝑤𝑢
}] 𝜕ℎ

𝜕𝑥

1
ℎ

𝜕
𝜕𝑥

[

{

𝛼𝑠 (𝐾 − 1) + 1
}

[

ℎ3

12

{

( 𝜕𝑢
𝜕𝑥

)2
− 𝜕

𝜕𝑥
𝜕𝑢
𝜕𝑡

− 𝑢 𝜕
2𝑢

𝜕𝑥2
− 2𝐶

𝐷𝑉
𝑢 𝜕𝑢
𝜕𝑥

}

+ ℎ2

2

{( 𝜕
𝜕𝑡

+ 𝑢 𝜕
𝜕𝑥

)

𝑤 + 𝐶
𝐷𝑉

𝑤𝑢
}

]]

= 𝑔𝑥 − 𝜇𝛼𝑠
[

(1 − 𝛾) 𝑔𝑧 +
{( 𝜕

𝜕𝑡
+ 𝑢 𝜕

𝜕𝑥

)

𝑤 + 𝐶
𝐷𝑉

𝑤𝑢
}]

− 𝐶
𝐷𝑉

𝑢2. (2)

The second term on the left hand side of (2) describes the advec-
tion, while the third term (in the first square bracket) describes the
extent of the local deformation that stems from the hydraulic pressure
gradient of the free-surface of the landslide in which

(

1 − 𝛼𝑠
)

𝑔𝑧𝜕ℎ∕𝜕𝑥
merges from the hydraulic pressure gradient associated with possible
nterstitial fluids in the landslide, and the terms associated with 𝑤 are
rom the enhanced gravity [1]. The fourth term on the left hand side
in the second square brackets) are extra addition in the flux due to the
on-hydrostatic contributions. Moreover, the third and fourth terms on
he left hand side, and the other terms on the right hand side of (2)
epresent all the involved forces. The first and second terms on the right
and side of (2) are the gravity acceleration, effective Coulomb friction
hat includes lubrication (1 − 𝛾), liquefaction

(

𝛼𝑠
)

(because, if there is
o or substantially low amount of solid, the mass is fully liquefied,
.g., lahar flows), the third and fourth terms with 𝑤 emerge from
nhanced gravity, and the fifth term is the viscous drag, respectively.
2

he term with 1−𝛾 or 𝛾 originates from the buoyancy effect. By setting
= 0 and 𝛼𝑠 = 1, we obtain a dry landslide, grain flow, or an avalanche
otion. However, I keep 𝛾 and 𝛼𝑠 also to include possible fluid effects

n the landslide (mixture). Note that for 𝐾 = 1 (which may prevail for
extensional flows, [8]), the third term on the left hand side associated
with 𝜕ℎ∕𝜕𝑥 simplifies drastically, because

{

((1 − 𝛾)𝐾 + 𝛾) 𝛼𝑠 +
(

1 − 𝛼𝑠
)}

becomes unity. So, the isotropic assumption (i.e., 𝐾 = 1) loses some
important information about the solid content, the buoyancy effect,
liquefaction and lubrication in the mixture. Furthermore, 𝑤 = − ℎ

2
𝜕𝑢
𝜕𝑥 is

he mean slope normal velocity [1,18].

.2. Linearized mass and momentum balance equations

I linearize (1) and (2) with ℎ = 𝐻 + ℎ̃, where 𝐻 is the background
(mean) material depth on which the amplitude ℎ̃ is defined. For sim-
plicity, the tildes are discarded from the resulting equations. Then, I
obtain the linearized mass and momentum equations as:
𝜕ℎ
𝜕𝑡

+𝐻 𝜕𝑢
𝜕𝑥

= 0, (3)

𝜕𝑢
𝜕𝑡

+
[

((1 − 𝛾)𝐾 + 𝛾) 𝛼𝑠 +
(

1 − 𝛼𝑠
)]

𝑔𝑧 𝜕ℎ
𝜕𝑥

− 𝐻2

3
[

𝛼𝑠 (𝐾 − 1) + 1
] 𝜕2

𝜕𝑥2
𝜕𝑢
𝜕𝑡

= 𝑔𝑥 − (1 − 𝛾)𝛼𝑠𝜇𝑔𝑧 +
1
2
𝜇𝛼𝑠𝐻

𝜕
𝜕𝑡

𝜕𝑢
𝜕𝑥

, (4)

where, out of 𝐻2

3

[

𝛼𝑠 (𝐾 − 1) + 1
] 𝜕2

𝜕𝑥2
𝜕𝑢
𝜕𝑡 the factors 1

4 and 1
12 stem from

the enhanced gravity (or hydraulic pressure gradient) and dispersion,
respectively. Note that, (4) extends the Peregrine [15] dispersive sys-
tem [19,20] from water waves to mixture debris waves.

2.3. A novel dispersive wave equation for landslide

Now, utilizing (3), the third terms on both sides of (4) can be written
in terms of ℎ, and the resulting momentum equation yields:

𝜕𝑢
𝜕𝑡

+
[

((1 − 𝛾)𝐾 + 𝛾) 𝛼𝑠 +
(

1 − 𝛼𝑠
)]

𝑔𝑧 𝜕ℎ
𝜕𝑥

+ 𝐻
3

[

𝛼𝑠 (𝐾 − 1) + 1
] 𝜕
𝜕𝑥

𝜕2ℎ
𝜕𝑡2

= 𝑔𝑥 − (1 − 𝛾)𝛼𝑠𝜇𝑔𝑧 −
1
2
𝜇𝛼𝑠

𝜕2ℎ
𝜕𝑡2

. (5)

With the help of (3), 𝑢 can be removed from (5). For this, differentiate
(3) with respect to 𝑡, and (5) with respect to 𝑥. Then, eliminating 𝑢 from
5), I obtain a novel dispersive wave equation for landslide:

𝜕2ℎ
𝜕𝑡2

=  𝜕2ℎ
𝜕𝑥2

+ 𝜕2

𝜕𝑥2
𝜕2ℎ
𝜕𝑡2

+  𝜕2

𝜕𝑡2
𝜕ℎ
𝜕𝑥

, (6)

where  ,, and  are the involved physical parameters given by
 =

[

((1 − 𝛾)𝐾 + 𝛾) 𝛼𝑠 +
(

1 − 𝛼𝑠
)]

𝑔𝑧𝐻,  =
[

𝛼𝑠 (𝐾 − 1) + 1
] 𝐻2

3 , and  =
𝜇𝛼𝑠

𝐻
2 , respectively. In (6),  is the effective lateral stress (per unit

density). For the reasons explained below, I call  the dispersion
parameter. Here,  characterizes the non-hydrostatic contribution, and
the term associated with  emerged due to the effect of enhanced
gravity in the source. Note that, for a variable slope, different additional
forcing terms would appear in (6), which have been neglected for now
for simplicity. Eq. (6) is a complex dispersive partial differential equa-
tion for landslide. For a relatively less dense flow (i.e., substantially
dilute or hyperconcentrated flows with low particle concentration)
with lower friction, and/or a relatively slowly varying flow surface
(i.e., 𝜕ℎ∕𝜕𝑥), the term with  may be ignored, e.g., consider 𝜇 = 0.17
(for 𝛿 = 10◦), 𝛼𝑠 = 0.2,𝐻 = 1.0, resulting in  = 0.017. If not, this can
e revived. Eq. (6) takes the simple classical wave equation when the
erms with  and  are ignored, for which

√

 is the wave speed for
the debris motion. To explore the first order effects of the dispersive
phenomena in the mixture mass flow, in what follows, for simplicity,
I disregard the influence of the term associated with . Physically
plausible values of the model parameters  and  are explained at
Section 4 representing some possible scenarios.
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3. Dispersion in non-hydrostatic mass flow

3.1. The dispersion relation

Assume a plain wave of the form:

ℎ = ℎ0 exp [𝑖(𝑘𝑥 − 𝜔𝑡)] , (7)

where ℎ0 = ℎ(0, 0), and 𝜔 and 𝑘 are the wave frequency and the wave
umber (∼ reciprocal of the wave length). Applying (7) in to (6) results
n:
2 =  𝑘2 −𝜔2𝑘2, (8)

write (8) in the form

2 =  𝑘2

1 +𝑘2
. (9)

Eq. (9) is the frequency dispersion relation (linking frequency and
wave number) to our model for mass flow, which is different than
the classical linear frequency dispersion for Boussinesq water wave
equations [21]. Note that, in (9),  is proportional to 𝐻2. So, 𝑘2 ∼
𝐻2𝑘2, which contains the relative wave number 𝐻𝑘.

3.2. The phase velocity

The landslide phase velocity (speed) 𝐶𝑝 is defined as 𝐶𝑝 = 𝜔∕𝑘,
which, from (9), takes the form

𝐶𝑝 =
𝜔
𝑘

= ±
√


1 +𝑘2

. (10)

So, for the non-hydrostatic mass flow, the phase velocity is not a con-
stant but is a function of the wave number. Due to the non-zero positive
dispersion parameter , (10) gives rise to the group velocity that is
different from the phase velocity. Also note that,  has the dimension
of m2s−2 and 𝑘2 is dimensionless. Thus, 𝐶𝑝 has the dimension of ms−1,
the velocity.

3.3. The group velocity

The landslide group velocity is denoted by 𝐶𝑔 and is defined as

𝐶𝑔 = 𝜕𝜔
𝜕𝑘

, (11)

hich is the measure of the rate of change of the wave frequency as
function of the wave number. From the phase velocity (10), I obtain

he group velocity:

𝑔 = 𝜕𝜔
𝜕𝑘

= 𝜕
𝜕𝑘

(

𝑘𝐶𝑝
)

= 1


(


1 +𝑘2

)3∕2
=
(

1
1 +𝑘2

)

𝐶𝑝. (12)

3.4. The dispersion number

Eq. (12) reveals a strikingly impressive relation between the phase
velocity and the group velocity. There exists a function 𝑝

𝑛 of the wave
number 𝑘 such that it defines a mapping between the phase velocity
and the group velocity given by the relation:

𝐶𝑝 = 𝐶𝑔𝑝
𝑛, 𝑝

𝑛(𝑘) = 1 +𝑘2. (13)

The function 𝑝
𝑛 can be written as

𝑝
𝑛 =

𝐶𝑝

𝐶𝑔
. (14)

s for 𝐶𝑝, 𝐶𝑔 has the dimension of velocity. So, 𝑝
𝑛, as the ratio

etween the phase velocity and the group velocity, is a dimensionless
umber. I call 𝑝

𝑛 the dispersion number that measures the deviation
f the group velocity from the phase velocity. As indicated by (13),
or the problem under consideration, 𝑝

𝑛 is a stretching function of the
ave number and is bounded from below by unity, i.e., 𝑝

𝑛 ≥ 1. This
eans, 𝑝 provides a dynamic scaling between 𝐶 and 𝐶 . It shows
𝑛 𝑝 𝑔 t

3

hat 𝐶𝑔 ≤ 𝐶𝑝, which is opposite to the dispersive wave in a piano
tring [22,23]. Furthermore, for our problem, the phase and the group
elocity have the same direction, but different speeds. Moreover, the
ave becomes non-dispersive if the term associated with  can be

gnored for which 𝐶𝑔 → 𝐶𝑝, consequently 𝑝
𝑛 = 1, as for the ideal string,

r the sound wave in a room, which are non-dispersive. However,
or piano string, 𝑝

𝑛 takes the form 𝑝
𝑛 =

(

1 +𝑘2
)

∕
(

1 + 2𝑘2
)

, 
here appropriately corresponds to the physical quantity for piano. It
means, for piano string the dispersion number decreases as a function
of the wave number 𝑘 from its maximum 1 (as 𝑘 → 0) to minimum
1∕2 (as 𝑘 is sufficiently large). So, the wave dispersion for landslide is
fundamentally different than the wave dispersion in the piano string. In
other words, landslides can be more dispersive than the piano strings.

In fact, the dispersion number plays a dominant role as all the
relevant quantities 𝜔,𝐶𝑝 and 𝐶𝑔 are expressed in terms of 𝑝

𝑛. Impor-
tantly, once we know  and 𝑝

𝑛, the wave frequency, phase and group
velocities are known, because, usually,  is a parameter, and 𝑝

𝑛 varies
s a function of the wave number.

. Results and analyses of dispersive landslides

Here, I manifest the contribution of dispersion on the wave motion
n mass flow. Unless otherwise stated, following the general values
rom the literature [7,8], the material parameters are chosen as follows:
he earth pressure coefficient 𝐾 = 0.9 (main downslope extensional

motion), the volume fraction of solid in the mixture material 𝛼𝑠 = 0.65,
he buoyancy (lubrication) parameter 𝛾 = 1100∕2900 (ratio between
he true fluid and the solid densities in the mixture), 𝑔𝑧 = 𝑔 cos 𝜁 =
.94 (𝑔 = 9.81, 𝜁 = 45◦, the gravitational constant and the slope
ngle), and the mean material depth 𝐻 = 0.5 m, respectively. Here,

represents the granular frictional behavior of the material (lower in
xtension, higher in compression), 𝛾 the frictional weakening due to
he possible presence of the fluid, and 𝛼𝑠 characterizes the liquefaction
n the mixture material, because as 𝛼𝑠 → 0 the mixture is fully liquefied
24,25]. So, 𝛼𝑠, 𝐾 and 𝛾 together explain the behavior of the granular
debris) material in the mixture. These give the values of  and  in
10) and (12) of about 13.31 and 1.25, respectively.

.1. The wave frequency

Fig. 1 displays the wave frequency as a function of the wave num-
er, 𝜔 = 𝑘𝐶𝑝, as given by the relation (10). While the wave frequency
ncreases linearly with the wave number without dispersion (that can
e realized by setting  = 0), the wave frequency with dispersion
including the term associated with  that can be realized with  ≠ 0)
ncreases non-linearly as a function of the wave number. For small wave
umber both wave frequencies are similar, however, for large wave
umbers, the difference is large. Furthermore, in general, the wave
requency without dispersion is much higher than the same with dis-
ersion. When in reality the waves are dispersive, the wave frequency
ithout dispersion appears to heavily overestimate the dispersive wave

requency for higher wave number.

.2. The phase velocity and group velocity

The phase velocity and group velocity are technically important
uantities as they provide the information of the motion of individual
ave crest and energy transport of the modulated wave packet. The
hase velocity without and with dispersion, and the group velocity as
iven by (10) and (12), respectively, are shown in Fig. 2. By definition,
he non-dispersive phase velocity is a constant. However, the dispersive
hase velocity decreases non-linearly as the wave number increases.
oreover, the group velocity further decreases non-linearly as the wave

umber increases. Importantly, with dispersion, all three behave fun-
amentally differently. This, in fact, is the manifestation of dispersion.
ithout dispersion, all three would be the same with a constant value,
he non-dispersive phase velocity.
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Fig. 1. The wave frequency as a function of wave number given by (10). The wave frequency without and with dispersion are fundamentally different, and differ largely for
higher wave number.
Fig. 2. The phase velocity and group velocity as functions of the wave number given by (10) and (12). The non-dispersive phase velocity is constant. The dispersive phase velocity
and group velocity decrease non-linearly with the wave number. The dispersive group velocity is the lowest among the three.
Fig. 3. The dispersion number 𝑝
𝑛 as a function of the wave number 𝑘 given by (13). Also shown is the reference when the dispersion is absent.
4.3. The dispersion number

The dispersion number 𝑝
𝑛 given in (14) is presented in Fig. 3. It

shows that the dispersion number increases rapidly as the wave number
increases. This resulted due to the stretching of 𝑝

𝑛 as given in (13),
and summarizes the overall effect of dispersion in the wave dynamics
in mass flow.
4

4.4. Influence of parameters

The wave frequency, phase and group velocities, and the dispersion
number, 𝜔, 𝐶𝑝, 𝐶𝑔 and 𝑝

𝑛, all depend collectively on the effective
lateral stress  and the dispersion parameter . However, explicitly,
they depend either linearly or non linearly on the solid volume fraction
𝛼 , the earth pressure coefficient 𝐾, buoyancy or lubrication effect 𝛾,
𝑠
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d

Fig. 4. The wave frequency as a function of wave number as in Fig. 1, but now with 𝐻 = 2. The wave frequency without and with dispersion are fundamentally different, and
iffer largely for higher wave number, more than in Fig. 1.
Fig. 5. The phase velocity and group velocity as functions of wave number as in Fig. 2, but now with 𝐻 = 2. The non-dispersive phase velocity is constant. The dispersive phase
velocity and group velocity decrease non-linearly with the wave number, faster than in Fig. 2. The dispersive group velocity is the lowest among the three.
Fig. 6. The dispersion number 𝑝
𝑛 as a function of the wave number 𝑘 as in Fig. 3, but now with 𝐻 = 2, which now increases more rapidly than in Fig. 3. Also shown is the

reference when the dispersion is absent.
the channel slope 𝜁 , and the mean material depth 𝐻 . The detailed
analysis can be carried out based on all these parameters. Particularly
important are 𝛼𝑠, 𝐾 and 𝛾 as they carry crucial physical information of
the solid particles and the fluid in the mixture. Nevertheless, as seen
from the representations and definitions of 𝜔, 𝐶𝑝, 𝐶𝑔 and 𝑝

𝑛, 𝐻 plays
a rather key role in determining the wave frequency, phase and group
velocities, and the dispersion number, because  varies quadratically
with 𝐻 . So, here, I only focus on 𝐻 . I increase its value from 0.5 to 2.
The results are presented in Figs. 4, 5 and 6 for the wave frequency,
5

the phase and group velocities and the dispersion number, respectively.
Comparing these figures with their counterparts, Figs. 1, 2 and 3, it
is evident that the wave frequency, phase and group velocities all
decrease strongly with the increased 𝐻 value and saturate much earlier
with their lower values within the domain of smaller wave number 𝑘.
However, the dispersion number increases rapidly with the increased
𝐻 value. This is also what the structures of these variables tell us
from their analytical representations, because all of 𝜔, 𝐶𝑝, and 𝐶𝑔 are
somehow inversely related with , but, 𝑝 is linearly related with .
𝑛



S.P. Pudasaini International Journal of Non-Linear Mechanics 150 (2023) 104349

w
w
f

Fig. 7. The wave frequency as a function of wave number for surface water waves for intermediate water depth.
Fig. 8. The phase velocity and group velocity as functions of wave number for surface water waves for intermediate water depth.
Yet, note that the non-dispersive phase velocity is now significantly
higher than in the previous figure, and the rate at which the phase and
group velocities decrease is much higher than the same in the previous
figure. This also resulted in the rapid increase of dispersion number
than in the previous figure for higher mean material depth.

4.5. Comparison with the surface water wave

The classical shallow water surface waves are non-dispersive. For
deep water surface waves, the phase velocity is 𝐶𝑝 =

√

𝑔∕𝑘 and the
group velocity is one half of the phase velocity, 𝐶𝑔 = 0.5𝐶𝑝 and are
independent of the fluid depth. This is not relevant for us for the
present consideration. So, with respect to the dispersion relation, the
intermediate fluid depth is relevant here. The phase velocity for the in-
termediate water depth is 𝐶𝑝 =

√

𝑔
𝑘 tanh(𝐻𝑘), while the group velocity

is 𝐶𝑔 = 1
2

[

1 + 2𝐻𝑘
sinh(2𝐻𝑘)

]

𝐶𝑝, see, e.g., [21]. Dispersion relations for the
ater waves with the intermediate depth are presented in Fig. 7 for the
ave frequency, in Fig. 8 for the phase and group velocity, and in Fig. 9

or the wave number, respectively, with the fluid depth 𝐻 = 2 (chosen
this way for the comparison reason). Compared with the corresponding
figures Figs. 4, 5 and 6, we observe that the new dispersion relations de-
rived in Section 3 behave fundamentally differently than the dispersion
relations for the water waves with depth. Particularly interesting is the
dispersion number. While the new dispersion number derived here for
mass flow increases continuously as a quadratic function of the wave
number with its minimum value of unity, the dispersion number for the
water waves also begins at its minimum value of unity, then hyperly
rises up, but then asymptotically approaches the dispersion number
(two) of the deep water waves already at about (relatively low) wave

number 𝑘 ≥ 2.

6

5. Discussion

5.1. General aspects of the landslide dispersion relation

We observed the following important physical phenomena from the
landslide dispersion relation presented in Section 3.

• As 𝐶𝑝 depends on the wave number 𝑘, the wave under consider-
ation is strongly dispersive.

• The new dispersion relation includes many different physical
parameters and mechanical responses.

• The usual shallow water wave (𝛼𝑠 = 0, 𝐾 = 1, and the term with
 can be neglected) is a special case: 𝐶𝑤

𝑝 =
√

𝑔𝑧𝐻 .
• Classical debris-avalanche motion is a special case when the non-

hydrostatic contribution is neglected, i.e., 𝐶𝑑
𝑝 =

√

 , which is the
wave speed, and can be written in alternative form as:

𝐶𝑑
𝑝 =

√

 =
√

[

((1 − 𝛾)𝐾 + 𝛾) 𝛼𝑠 +
(

1 − 𝛼𝑠
)]

𝑔𝑧𝐻

=
√

1
𝜌
[

((1 − 𝛾)𝐾 + 𝛾) 𝛼𝑠 +
(

1 − 𝛼𝑠
)]

𝜌𝑔𝑧𝐻 =
√

𝑇
𝜌
, (15)

where, 𝜌 is the mixture bulk density and 𝑇 =
[

((1 − 𝛾)𝐾 + 𝛾) 𝛼𝑠+
(

1 − 𝛼𝑠
)]

𝜌𝑔𝑧𝐻 is the lateral stress (compressive for mass flow).
So, without the dispersion (non-hydrostatic) contribution, the
square of the phase velocity is the ratio between the lateral
compressive stress and the material density. Which is similar to
the phase velocity for a string in which the ratio is between
the tension and the density. Thus, for the mass flow, the com-
pressive stress involves gravity, particle concentration, buoyancy,
the earth pressure coefficient and the mean depth of the debris



S.P. Pudasaini International Journal of Non-Linear Mechanics 150 (2023) 104349
Fig. 9. The dispersion number as a function of the wave number for surface water waves for intermediate water depth.
material, which for the classical shallow water is only related
to gravity and the mean water depth. There are other important
aspects: Phase velocity is high for compressional flows (for which
𝐾 > 1), and low for dilational flows (𝐾 < 1). Similarly, phase
velocity is high for pure granular flow (𝛼𝑠 = 1, 𝛾 = 0), and
reduces for the particle fluid mixture flows, with its minimum for
fully buoyant flows or when the particle concentration vanishes,
turning it in to the pure fluid flow. These physical mechanisms
are consistent with the strength of material.

• Classical shallow water and debris flow models are non-dispersive.
• Dispersive lateral stress and dispersion intensity: Consider 𝐶𝑝

in (10) in its full form involving :

𝐶𝑝 =
√


1 +𝑘2

=

√

√

√

√

[

((1 − 𝛾)𝐾 + 𝛾) 𝛼𝑠 +
(

1 − 𝛼𝑠
)]

𝜌𝑔𝑧𝐻
(

1 +𝑘2
)

𝜌

=
√

𝑇
(

1 +𝑘2
)

1
𝜌
=

√

𝑇𝑒
𝜌
, (16)

where 𝑇𝑒 = 𝑇𝑒(𝑘) = 𝑇 ∕
(

1 +𝑘2
)

. We call 𝑇𝑒 the effective
dispersive lateral stress. This means that as the wave number
increases, the effective dispersive stress decreases, however with-
out changing the material density. This ultimately decreases the
phase velocity, as in the reduced phase speed in string, but, with
less tension. Importantly, the dispersion relation emerges due to
the dispersion parameter  which varies linearly with the solid
particle concentration 𝛼𝑠 and the lateral pressure coefficient 𝐾,
and quadratically with the depth 𝐻 . So, the dispersion intensity
increases linearly with 𝛼𝑠 and 𝐾, and quadratically with 𝐻 and 𝑘.
Therefore, dispersion is strong for relatively thick flows, and for
large wave number.

• The anti-restoring force in landslide:  in the denominator
in 𝐶𝑝, i.e., in

(

1 +𝑘2
)

, generates the dispersive wave. This,
in our consideration, originates from the acceleration of the de-
bris material in the slope normal direction (including drags and
virtual mass forces in real mixture where the relative acceler-
ation between particle and fluid is not negligible) in excess to
the hydrostatic force (the material load). In (16), the restor-
ing force is decreasing as a function of the wave number to-
gether with the dispersion parameter. So, 𝐶𝑝 for landslide induces
an anti-restoring force. For debris material during the primarily
down-slope motion this contributes positively, because this is the
anti-restoring force. This is in contrast to the classical disper-
sive wave in string with stiffness, which is the restoring force.
Due to the anti-restoring force, landslides are more dispersive
than the piano strings. This reveals that the dispersion behavior
in mass flow is fundamentally different than that in classical
stiff-string wave motion. However, my dispersion relation, in
principle, agrees with classical water waves: waves with higher
wave length move faster.
7

• All the frequencies and modes of dispersion of waves in landslides
can be acquired from (6) or (8) from which we may construct the
sounds associated with landslides as for piano.

• For a reasonably larger wave length the surface tension effect can
be neglected. And thus, the gravity-capillary wave can well be
approximated simply by the surface-gravity wave. For this reason,
I have neglected the surface tension.

• As friction and slope geometry are other important aspects in
mass flows, the more complete picture of the wave dispersion
in landslide can be achieved by including the additional effects
of the friction and topography (curvature) related terms in (6).
This may result in a complex combination of restoring- and anti-
restoring force regimes, possibly with the group velocity being in
the direction opposite to the phase velocity. These sophisticated
aspects can be dealt with separately.

Important aspect here is the derivation of the complex dispersive
partial differential equation for landslide which reduces to the simple
classical wave equation. The new dispersion relations behave funda-
mentally differently than the dispersion relations for the water waves as
the usual shallow water wave is a special case. The landslide dispersion
relation is perceptibly explained as it incorporates several physical pa-
rameters and mechanical responses. It establishes a crucial relationship
between the phase velocity and the group velocity. Importantly, the
wave dispersion for landslide appeared to be different than the wave
dispersion in the piano string which reveals the fact that landslides can
be more dispersive than the piano strings.

5.2. Implications of the dispersion relation in mass flow simulations

The above results demonstrate the importance of dispersion in legit-
imately simulating the wave phenomena in naturally dispersive mass
flows. The very special form of the wave frequencies, phase and group
velocities and the dispersion number shown in Figs. 1, 2 and 3 are due
to the novel dispersive wave Eq. (6), or the dispersion relation (10),
representing the mass flow problem incorporating the effective lateral
stress (normalized by mass density)  , and the dispersion parameter
. The overall wave dynamics are determined by  and , while
dispersion is solely dependent on . The major feature of the dispersion
relation is to tell us how the waves of different wave lengths move with
different frequencies. So, it can play an important role in debris surge
generation and attenuation.

6. Summary

Based on the non-hydrostatic mass flow model [1], I derived a novel
dispersive wave equation, or a dispersive partial differential equation,
the first of this kind, for the landslide motion. This reduces to the simple

classical wave equation when the non-hydrostatic dispersion effects are
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ignored. The new system of dispersive wave for debris mixture recovers
the classical dispersive water waves as a special case. The frequency
dispersion relation to my model for mass flow is different than the
classical linear frequency dispersion for Boussinesq water wave equa-
tions. Obtained results show that the wave frequency with dispersion
increases non-linearly as a function of the wave number. The wave
frequency without and with dispersion are fundamentally different. For
dispersive landslides, the wave frequency without dispersion appears
to heavily overestimate the dispersive wave frequency for higher wave
number. Due to the dispersion parameter emerging from the non-
hydrostatic contribution for mass flow, the phase velocity becomes a
function of the wave number. This gives rise to the group velocity
that is significantly different from the phase velocity, characterizing
the dispersive mass flows. The dispersive phase velocity and group
velocity decrease non-linearly with the wave number. The dispersive
group velocity is substantially lower than the phase velocity.

I analytically derived the dispersion number as the ratio between
the phase velocity and the group velocity. The dispersion number
measures the deviation of the group velocity from the phase velocity
and provides a dynamic scaling between these two velocities. The
dispersion number increases rapidly as the wave number increases,
and summarizes the overall effect of dispersion in the wave dynamics
in mass flow. While the dispersion number for mass flow increases
continuously as a quadratic function of the wave number, the disper-
sion number for the water waves (for intermediate depth) is strongly
bounded (within the small wave number) between the shallow water
and the deep water dispersion numbers. Along with other physical pa-
rameters, the mean flow depth plays an important role in determining
the wave frequency, phase and group velocities, and the dispersion
number. My model and results demonstrate the importance of disper-
sion in legitimately describing the wave phenomena in dispersive mass
flows.

I defined the effective dispersive lateral stress for landslide. As the
wave number increases, the effective stress decreases, however without
changing the material density. Contrary to the classical dispersive wave
in string with stiffness, which is associated with the restoring force,
I proved the existence of an anti-restoring force in landslide. Due to
the anti-restoring force, landslides are more dispersive than the piano
strings. This reveals the fact that the wave dispersion in landslide is
fundamentally different than the wave dispersion in the piano string. As
for piano, there is now a possibility to construct the sounds associated
with dispersive landslides.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

I thank the reviewers and the editor Giuseppe Saccomandi for their
constructive comments and suggestions that helped to substantially
8

improve the paper. This paper is based on arXiv:2203.09197 at https:
//arxiv.org/pdf/2203.09197.pdf.

References

[1] S.P. Pudasaini, A non-hydrostatic multi-phase mass flow model, Int. J. Non-Linear
Mech. 147 (2022) 104204.

[2] S. Savage, K. Hutter, The motion of a finite mass of granular material down a
rough incline, J. Fluid Mech. 199 (1989) 177–215.

[3] R.M. Iverson, R.P. Denlinger, Flow of variably fluidized granular masses across
three-dimensional terrain: 1, coulomb mixture theory, J. Geophys. Res. 106 (B1)
(2001) 537–552.

[4] E.B. Pitman, L. Le, A two-fluid model for avalanche and debris flows, Phil. Trans.
R. Soc. A363 (2005) 1573–1602.

[5] C.Y. Kuo, C.C. Tai. Y.-C, K.J. Chang, A.Y. Siau, J.J. Dong, R.H. Han, T.
Shimamoto, C.T. Lee, The landslide stage of the Hsiaolin catastrophe: Simulation
and validation, J. Geophys. Res. 116 (F04007) (2011) http://dx.doi.org/10.1029/
2010JF001921.

[6] S.P. Pudasaini, A general two-phase debris flow model, J. Geophys. Res. 117
(2012) 1–28, F03010.

[7] S.P. Pudasaini, M. Mergili, A multi-phase mass flow model, J. Geophys. Res.:
EarthSurface 124 (2019) 2920–2942.

[8] S.P. Pudasaini, K. Hutter, Avalanche Dynamics: Dynamics of Rapid Flows of
Dense Granular Avalanches, Springer, Berlin, New York, 2007.

[9] R.P. Denlinger, R.M. Iverson, Granular avalanches across irregular three-
dimensional terrain: 1, theory and computation, J. Geophys. Res 109
(2004).

[10] O. Castro-Orgaz, K. Hutter, J.V. Giraldez, W.H. Hager, Nonhydrostatic granular
flow over 3-D terrain: New Boussinesq-type gravity waves? J. Geophys. Res.
Earth Surf. 120 (2015).

[11] D.-H. Kim, P.J. Lynett, Dispersive and nonhydrostatic pressure effects at the front
of surge, J. Hydraul. Eng. 137 (7) (2011) 754–765.

[12] J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un
canal rectangulaire horizontal, en communiquantliquide contenu dans ce canal
des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl.
17 (1872) 55–108.

[13] J. Boussinesq, Essai sur la théorie des eaux courantes, Memoires Présentés Par
Divers Savants À L’Académie Des Sciences, Ser 3, vol. 23 (no. 1) (1877) 1–680,
[in French].

[14] F. Serre, Contribution à l’étude des écoulements permanents et variables dans
les canaux (Contribution to the study of steady and unsteady channel flows),
Houille Blanche 8 (12) (1953) 830–887.

[15] D.H. Peregrine, Long waves on a beach, J. Fluid Mech. 27 (1967) 815–827.
[16] A. Green, P. Naghdi, A derivation of equations for wave propagation in water

of variable depth, J. Fluid Mech. 78 (1976) 237–246.
[17] O. Nwogu, Alternative form of Boussinesq equations for nearshore wave

propagation, J. Waterw. Port Coastal Ocean Eng. 119 (6) (1993) 618–638.
[18] L. Yuan, W. Liu, J. Zhai, S.F. Wu, A.K. Patra, E.B. Pitman, Refinement on non-

hydrostatic shallow granular flow model in a global Cartesian coordinate system,
Comput. Geosci. 22 (2018) 87–106.

[19] G. Khakimzyanov, D. Dutykh, Z. Fedotova, O. Gusev, Dispersive shallow water
waves, in: Theory, Modeling, and Numerical Methods, Birkhüser, Basel, ISBN:
978-3-030-46266-6, 2020.

[20] G. Khakimzyanov, D. Dutykh, Z. Fedotova, O. Gusev, Dispersive shallow water
wave modelling. Part I: Model derivation on a globally flat space, 2020, arXiv:
1706.08815v4.

[21] M.W. Dingemans, Water Wave Propagation over Uneven Bottoms: Linear Wave
Propagation, World Scientific Pub., Singapore, 1997.

[22] M. Podlesak, A.R. Lee, Dispersion of waves in piano strings, J. Acoust. Soc. Am.
83 (305) (1988) http://dx.doi.org/10.1121/1.396432.

[23] X. Gracia, T. Sanz-Perela, The wave equation for stiff strings and piano tuning,
Reports@SCM 3 (2017) (2017) 1–16, http://dx.doi.org/10.2436/20.2002.02.11.

[24] S.P. Pudasaini, M. Krautblatter, The mechanics of landslide mobility with
erosion, Nature Commun. 12 (2021) 6793, http://dx.doi.org/10.1038/s41467-
021-26959-5.

[25] S.P. Pudasaini, M. Krautblatter, The landslide velocity, Earth Surf. Dynam. 10
(2022) 165–189, http://dx.doi.org/10.5194/esurf-2021-81.

http://arxiv.org/abs/2203.09197
https://arxiv.org/pdf/2203.09197.pdf
https://arxiv.org/pdf/2203.09197.pdf
https://arxiv.org/pdf/2203.09197.pdf
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb1
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb1
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb1
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb2
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb2
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb2
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb3
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb3
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb3
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb3
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb3
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb4
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb4
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb4
http://dx.doi.org/10.1029/2010JF001921
http://dx.doi.org/10.1029/2010JF001921
http://dx.doi.org/10.1029/2010JF001921
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb6
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb6
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb6
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb7
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb7
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb7
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb8
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb8
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb8
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb9
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb9
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb9
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb9
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb9
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb10
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb10
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb10
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb10
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb10
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb11
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb11
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb11
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb12
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb12
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb12
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb12
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb12
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb12
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb12
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb13
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb13
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb13
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb13
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb13
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb14
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb14
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb14
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb14
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb14
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb15
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb16
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb16
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb16
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb17
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb17
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb17
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb18
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb18
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb18
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb18
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb18
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb19
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb19
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb19
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb19
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb19
http://arxiv.org/abs/1706.08815v4
http://arxiv.org/abs/1706.08815v4
http://arxiv.org/abs/1706.08815v4
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb21
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb21
http://refhub.elsevier.com/S0020-7462(23)00001-X/sb21
http://dx.doi.org/10.1121/1.396432
http://dx.doi.org/10.2436/20.2002.02.11
http://dx.doi.org/10.1038/s41467-021-26959-5
http://dx.doi.org/10.1038/s41467-021-26959-5
http://dx.doi.org/10.1038/s41467-021-26959-5
http://dx.doi.org/10.5194/esurf-2021-81

	Dispersive landslide
	Introduction
	A dispersive wave equation for mass flow
	Balance equations for mass flow
	Linearized mass and momentum balance equations
	A novel dispersive wave equation for landslide

	Dispersion in non-hydrostatic mass flow
	The dispersion relation
	The phase velocity
	The group velocity
	The dispersion number

	Results and analyses of dispersive landslides
	The wave frequency
	The phase velocity and group velocity
	The dispersion number
	Influence of parameters
	Comparison with the surface water wave

	Discussion
	General aspects of the landslide dispersion relation
	Implications of the dispersion relation in mass flow simulations

	Summary
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


