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a b s t r a c t 

Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical 

processes in geophysical mass flows. Here, we propose a novel and process-based two-phase erosion- 

deposition model capable of adequately describing these complex phenomena commonly observed in 

landslides, avalanches, debris flows and bedload transports. The model is based on the jump in the mo- 

mentum flux including changes of material and flow properties along the flow-bed interface and en- 

hances an existing general two-phase mass flow model (“Pudasaini S.P., 2012, A general two-phase de- 

bris flow model, Journal of Geophysical Research, 117, F03010, doi:10.1029/2011JF002186”). A two-phase 

variably saturated erodible basal morphology is introduced which allows for the evolution of erosion- 

deposition-depths, incorporating the inherent physical process including momentum and rheological 

changes of the flowing mixture. By rigorous derivation, we show that appropriate incorporation of the 

mass and momentum productions or losses in conservative model formulation is essential for the physi- 

cally correct and mathematically consistent description of erosion-entrainment-deposition processes. We 

show that mechanically deposition is the reversed process of erosion. We derive mechanically consistent 

closures for coefficients emerging in the erosion-rate models. We prove that effectively reduced friction 

in erosion is equivalent to the momentum production. With this, we solve the long standing dilemma of 

mass mobility, and show that erosion enhances the mass flow mobility. The novel enhanced real two- 

phase model reveals some major aspects of the mechanics associated with erosion, entrainment and 

deposition. The model appropriately captures the emergence and propagation of complex frontal surge 

dynamics associated with the frontal-drag with erosion. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Erosion, entrainment and deposition processes play important

ole in debris flow dynamics and deposition morphology, and

haping the landscape ( Mergili et al., 2020a,b ). However, these pro-

esses are very poorly understood. Debris flows are gravity driven

ixture flows of soil, rock, and water ( Berger et al., 2011 ; McCoy

t al., 2012 ) that can be modelled as a two-phase mixture flow of

iscous fluid and solid particles ( Pudasaini, 2012 ). Debris flows can

ramatically increase their volume and destructive potential, and

ecome exceptionally mobile by entraining sediment by scouring

hannel beds or undermining banks ( Hungr et al., 2005 ; Reid et al.,

011 ). Entrainment can strongly influence the flow dynamics and

he characteristics of deposit with adverse societal and environ-

ental impacts ( Rickenmann, 20 05 ; Godt and Coe, 20 07 ; Berger

t al., 2011 ; Pirulli and Pastor, 2012 ). Different field and labora-
∗ Corresponding author. 

E-mail address: pudasaini@geo.uni-bonn.de (S.P. Pudasaini). 
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ory studies have investigated bed sediment entrainment ( Egashira

t al., 2001 ; Rickenmann et al., 2003 ; Hungr and Evans, 2004 ;

erger et al., 2011 ; Reid et al., 2011 ; Iverson, 2012 ; McCoy et al.,

012 ; Dietrich and Krautblatter, 2019 ). Several mechanical and nu-

erical models have included entrainment ( Brufau et al., 20 0 0 ;

raccarollo and Capart, 2002 ; McDougall and Hungr, 2005 ; Chen

t al., 2006 ; Mangeney et al., 2007 ; Bouchut et al., 2008 ; Tai and

uo, 2008 ; Armanini et al., 2009 ; Crosta et al., 2009 ; Le and Pit-

an, 2009 ; Iverson, 2012 ; Fischer et al., 2015) . Erosion may depend

n the flow depth, flow velocity, solid concentration, density ratio,

ed slope or, the effective stresses at the interface, and initial and

oundary conditions ( Gauer and Issler, 2004 ; Fagents and Baloga,

0 06 ; Sovilla et al., 20 06 ; Issler et al., 20 08 ; Crosta et al., 20 09 ;

angeney et al., 2010 ; Berger et al., 2011) . 

There exist several hypotheses explaining the possible bed ero-

ion mechanics. Erosion and entrainment phenomena have been

idely studied in the recent years by applying both the continuum

echanical ( Jenkins and Berzi, 2016 ) and kinetic theory ( Berzi and

raccarollo, 2015 ) approaches, and covering both the laboratory

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103416
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2020.103416&domain=pdf
mailto:pudasaini@geo.uni-bonn.de
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( Fraccarollo and Capart, 2002 ; Iverson, 2012 ) and field scales

( Cascini et al., 2014, 2016 ; Cuomo et al., 2014, 2016 ). However, how,

where and when the erodible material enters the moving mass are

still largely unanswered questions, and pose significant modeling

and computational challenges. Another critical aspect, almost not

explicitly considered yet in a mechanically meaningful way, is the

deposition process. Although it may seem to be the opposite to

erosion, there can be fundamental differences between erosion and

deposition process. 

Basically two types of erosion (and deposition) models are in

use: empirical and mechanical ones. Empirical laws are developed

with experience and are most often used in practice. They are

based on yield- or erosion- rates as user specified calibration pa-

rameters ( Rickenmann et al., 2003 ; McDougall and Hungr, 2005 ;

Chen et al., 2006 ) in terms of erosion volume, mean shear stress,

erosion area and travel distance. Erosion-rate models for debris

flows also include equilibrium concentrations or slopes ( Takahashi

and Kuang, 1986 ; Egashira and Ashida, 1987 ; Takahashi et al.,

1992 ; Egashira, 1993 ; Ghilardi and Natale, 1998 ; Brufau et al.,

20 0 0 ; Egashira et al., 2001 ; Chen and Zhang, 2015 ). Tai and Kuo

(2008) employed moving coordinates to generate erodible bed. As-

suming small velocity, Bouchut et al. (2008) obtained evolving

interface that includes basal curvature and erosion-rate. Extend-

ing Takahashi and Kuang (1986) ; Le and Pitman (2009) obtained

erosion-rate as a linear combination of velocity and shear stress

thresholds with basal velocity. 

Process-based mechanical models are derived with the mass

and momentum exchanges between a debris flow and the under-

lying erodible bed. This results in the erosion-rate that is propor-

tional to the shear stress difference between entraining and resist-

ing stresses, and inversely proportional to the effective slip velocity

on either side of the bed ( Fraccarollo and Capart, 2002 ; Iverson,

2012 ; Issler, 2014 ). However, this can simply be obtained directly

by considering the balance between the involved forces and mo-

mentum fluxes during the erosion process. The solid-like shear

stress along the substrate is often closed by effective Coulomb fric-

tion. In Fraccarollo and Capart (2002) the fluid-like interface shear

stress along the moving debris is closed with the Chezy equation.

In contrast, Iverson (2012) assumed complete liquefaction of the

substrate, and Coulomb-friction for the sliding layer. However, it

appears that the mechanical erosion-rate introduces a singularity,

such as the erosion-rate is inversely proportional to the velocity.

For bulk-, or solid-type models ( Iverson, 2012 ), as flow moves with

very high speed, erosion-rate is negligible, and as flow slows down

or stops, erosion-rate becomes infinitely large, which differs from

our intuition and also observations in nature. 

Erosion models can also be categorized as single-phase or mix-

ture models. Most erosion models are developed for single-phase

viscous fluid including Chezy-type equation, or viscous boundary

( Hogg and Pritchard, 2004 ). Similarly, erosion-rates are used com-

monly for landslides, rock and debris avalanches ( Naaim et al.,

2003 ; McDougall and Hungr, 2005 ; Bouchut et al., 2008 ; Tai and

Kuo, 2008 ; Le and Pitman, 2009 ; Mangeney et al., 2010 ). One

of the early mixture simulations with erosion was presented by

Armanini et al. (2009) , but it was for effectively single-phase ma-

terial. McDougall and Hungr (2005) ; Crosta et al. (2009) ; Pirulli

and Pastor (2012) presented one of the very first simulations for

rock/debris-avalanches with entrainment/deposition. Very few ero-

sion models are developed for fluid-grain mixture ( Fraccarollo and

Capart, 2002 ), saturated entrained materials ( Crosta et al., 2009 ),

and debris mixture ( Armanini et al., 2009 ; Iverson, 2012 ). None

of these models is fully coupled and a true two-phase model.

Only very few erosion-rate equations are used so far for simula-

tion ( Pirulli and Pastor, 2012 ). 

Another prevailing aspect is that, all these models are based on

the bulk mixture and are effectively single-phase. However, only
wo-phase erosion models would better describe the phenomena

s the debris flow and the erodible substrate themselves typically

re two-phase materials. Importantly, realistic two-phase erosion,

ntrainment and deposition models can only be constructed by

onsidering the two-phase mass flow model that explicitly consid-

rs both the solid and fluid phases and the strong interactions be-

ween the phases including the drag and viscous effects ( Pudasaini,

012 ). True two-phase erosion/deposition models, taking into ac-

ount both the solid and fluid phases separately and explicitly with

ossible phase interactions, have not yet been developed. Erosion

odels applicable to real two-phase flows have recently been in-

roduced by Pudasaini and Fischer (2016) . 

Despite the importance of entrainment to hazard assessment

nd landscape evolution ( Cascini et al., 2014, 2016 ; Cuomo et al.,

014, 2016 ), clear understanding of the basic process still remains

lusive owing to a lack of high-resolution field-scale data, and

lso laboratory experiments are limited to few flow parameters

e Haas and van Woerkom (2016) . Physics-based models and nu-

erical simulations may overcome these limitations and facilitate

or the more complete understanding by investigating much wider

spects of the flow parameters, erosion, mobility and deposition.

lthough different experimental and theoretical works, and simu-

ations have focused on sediment entrainment in the recent years,

uantitative and mechanical constraints on erosion rates and forms

re still limited and no consensus has been reached yet ( Bouchut

t al., 2008 ; Luca et al., 2009 ; Mangeney et al., 2010 ; Iverson, 2012 ;

cCoy et al., 2012 ). The mixture composition can evolve to dra-

atically change the spatial distribution of frictional and viscous

esistance in bulk material and the boundaries ( Iverson and Den-

inger, 2001 ; Pirulli and Pastor, 2012 ; Pudasaini and Krautblatter,

014 ; Pudasaini and Fischer, 2020 ). So, it is very important to prop-

rly model two-phase bed and flow properties that strongly con-

rol the occurrence and rates of entrainment, and mobility. 

However, even the basic mechanism of erosion in the pres-

nce of both fluid and solid has not yet been touched for which

ore advanced models are necessary, including mass and momen-

um productions in the respective balance equations for phases.

or solid, additional contribution emerges from basal erosion, and

eposition. For fluid, different additional contributions are due to

tream falling on debris, and water run-off leaving the debris. Also,

he fluid exchange between the debris and the substrate should be

onsidered. Erosion/deposition processes will have apparent effects

ith respect to a real two-phase, rather than in effectively single-

hase flow. The immediate impacts are seen in: the dynamics of

he solid and fluid volume fractions, and changes in the solid and

uid densities. These largely influence the interfacial drag, and vir-

ual mass forces. As the basal surface changes, effective internal

nd basal frictions evolve due to solid and fluid entrainment. 

Spatially changing fluid property may substantially alter the

uid viscosity. Spatially changing amount of solid influences the

on-Newtonian fluid stress. Evolving contrast between the solid

nd fluid density leads to change in buoyancy. This, plus the evolv-

ng earth pressure, alters the solid pressure. Erosion and depo-

ition change the basal surface and the whole system through

he Coulomb friction and drag terms. These aspects have (almost)

ever been investigated as they are related to the true two-phase

ature of flow. In the computational models by Fraccarollo and Ca-

art (2002) , Armanini et al. (2009) , Christen et al. (2010) and Frank

t al. (2017) , only the mass balance equations contain the effect

f bed elevation, but the momentum equations do not. Changes

n the basal surface due to erosion have only been included in

raccarollo and Capart (2002) and Le and Pitman (2009) . The pro-

ess on how the entrained mass is accelerated and distributed

ithin the flow and how it decelerates and deposits can only be

ffectively simulated with a real two-phase mass flow and erosion-

eposition model. 



S.P. Pudasaini and J.-T. Fischer / International Journal of Multiphase Flow 132 (2020) 103416 3 

 

m  

i  

t  

n  

a  

s  

o  

i  

e  

r  

t  

i  

w  

s  

e  

s  

r  

t  

r  

p  

o  

s  

b  

c  

t  

i  

a  

o  

N  

s  

t  

l  

r  

i  

m  

t  

t  

e  

i  

2  

s  

i  

m  

P  

o  

f  

m  

e  

i  

d  

i  

e

 

c  

a  

a  

m  

m  

s  

e  

m  

s  

t  

i  

t  

m  

p  

d  

(

2

 

f  

m  

w  

ρ  

a  

e  

p  

f  

s  

i  

t  

a  

2  

o

w  

a  

E  

o  

n  

f  

m  

i  

f
 

t

 

r  
From mechanical and mathematical point of view, there are five

ajor aspects in erosion (and/or deposition) modelling in geophys-

cal mass flows that potentially can also be applied to other flow

ypes. The first is the erosion-rate. Due to the complex flow dy-

amics and the rheology of the flowing mixture, the composition

nd state of the (erodible) basal morphology and its dynamic re-

ponse, proper understanding of the erosion process is, perhaps,

ne of the most challenging tasks in geophysical mass flows. This

s because erosion results from two competitive forces: (i) the force

xerted by the moving mixture on the erodible bed, and (ii) the

esistance by the latter on the moving material. Proper descrip-

ion of these forces involves their fundamental mechanical behav-

ors and how these are changing during the flow and interactions

ith the mobile substrate. There are well known methods to de-

cribe the basic mechanics of both the moving material and the

rodible bed, if their mechanics do not change in time and/or

pace. Nevertheless, as the physics of the moving mixture mate-

ial may change largely during the flow, and the same may be

rue for the flow bed, understanding and modelling the erosion-

ates is a great challenge. Second, how to model the real erosion

rocess is another crucial aspect. Because, often in the literature,

nly effectively single-phase mass movements and the associated

ingle-phase erosion are considered. However, in reality, the de-

ris flow material and the erodible substrate both are most often

omposed of the two-phase solid sediment particles and the in-

erstitial viscous fluid. Third, the proper knowledge of the veloc-

ties of the fluid and solid particles that have just been eroded

long the interface, and at the lowest layer of the flow, is of an-

ther major importance. There is no trivial way to estimate this.

evertheless, this plays a very important role in the entire ero-

ion and transport processes. Often, the velocity of eroded ma-

erial is set to zero that results in zero momentum productions

eading to completely different scenario. Since the eroded mate-

ial moves with non-zero velocity, setting this velocity to zero

s physically not admissible. The fourth aspect concerns the mo-

entum productions (or, losses) resulting from the mass produc-

ions (or, losses). Two different model-types are available even for

he effectively single-phase and quasi two-phase mass flow mod-

lling related to the momentum production. One type of models

nclude the momentum production ( Gray, 2001 ; Pudasaini et al.,

007 ; Le and Pitman, 2009 ) whereas the other model types con-

ider the mass productions but do not include, or argue not to

nclude, the corresponding momentum production or loss in the

omentum balance equations ( Christen et al., 2010 ; Iverson, 2012 ;

irulli and Pastor, 2012 ; Frank et al., 2017 ). However, the rigor-

us mathematical derivation clearly shows that the conservative

ormulation, as presented here, demands for the inclusion of mo-

entum productions in the momentum balance equations. Oth-

rwise, those models are physically incorrect and mathematically

nconsistent. The fifth aspect is concerned about the erosion in-

uced mobility, which still is a dilemma, as there are two conflict-

ng arguments concerning enhanced or decreased mobility due to

rosion. 

This paper addresses these aspects and presents a novel me-

hanical two-phase erosion model for geophysical mass flows such

s debris flows, and particle-fluid transports on mountain slopes

nd channels. The new model is based on the general two-phase

ass flow model ( Pudasaini, 2012 ), and on the jump in the mo-

entum flux across the erodible interface ( Drew, 1983 ) where the

urface tension has been neglected. The formally derived model

quations are in conservative form and consistently include both

ass and momentum productions. We prove that in erosional

ettings, the effectively reduced frictional stress is equivalent to

he (resulting) momentum production. We solve the long stand-

ng dilemma of mass mobility, and show that erosion enhances

he flow mobility. The simulations reveal some major and novel
echanical aspects associated with erosion, entrainment and de-

osition. The mechanical erosion model for two-phase mass flow

erived here can be extended to the multi-phase mass flows

 Pudasaini and Mergili, 2019 ). 

. Two-phase mass flow model with erosion-deposition 

In two-phase debris mixtures, phases are characterized by dif-

erent material properties. The fluid phase is characterized by its

aterial density ρ f , viscosity ηf and isotropic stress distribution;

hereas the solid phase is characterized by its material density

s , the internal friction angle φ, the basal friction angle δ, an

nisotropic stress distribution, and the lateral earth pressure co-

fficient K . The subscripts s and f represent the solid and the fluid

hases respectively, with the depth-averaged velocity components

or fluid u f = ( u f , v f ) and for solid u s = ( u s , v s ) in the down-

lope ( x ) and the cross-slope ( y ) directions. The total flow depth

s denoted by h , and the solid volume fraction by αs (similarly

he fluid volume fraction α f = 1 − αs ) which are functions of space

nd time. The solid and fluid mass balance equations ( Pudasaini,

012 ) together with the evolution equation for the basal morphol-

gy are given by 

∂ 

∂t 
( αs h ) + 

∂ 

∂x 
( αs hu s ) + 

∂ 

∂y 
( αs h v s ) = E s , 

∂ 

∂t 

(
α f h 

)
+ 

∂ 

∂x 

(
α f hu f 

)
+ 

∂ 

∂y 

(
α f h v f 

)
= E f , 

∂b 

∂t 
= −E; E = E s + E f , 

(1) 

here b = b(x, y ; t) is the basal topography that evolves in space

nd time, and E s , E f are the solid and the fluid erosion-rates, and

 is the total erosion-rate. This model can be used for partially

r, fully saturated erodible basal substrate, or the substrate that is

ot erodible ( E = 0 ). When the basal substrate is erodible, the solid

raction of E , i.e., E s , enters into the solid mass balance as the solid

ass production. So does the fluid fraction of E , i.e., E f , that enters

nto the fluid mass balance as the fluid mass production. Models

or these erosion-rates are developed in Section 3 . 
Similarly, momentum conservation equations for the solid and

he fluid phases, respectively, are: 

∂ 

∂t 

[ 
αs h 

(
u s −γ C 

(
u f −u s 

))] 
+ 

∂ 

∂x 

[
αs h 

(
u 2 s −γ C 

(
u 2 f −u 2 s 

)
+βx s 

h 

2 

)]

+ 

∂ 

∂y 

[ 
αs h 

(
u s v s −γ C 

(
u f v f −u s v s 

))] 
= h S x s +u b s E s , 

∂ 

∂t 

[ 
αs h 

(
v s −γ C 

(
v f −v s 

))] 
+ 

∂ 

∂x 

[ 
αs h 

(
u s v s −γ C 

(
u f v f −u s v s 

))] 

+ 

∂ 

∂y 

[
αs h 

(
v 2 s −γ C 

(
v 2 f −v 2 s 

)
+βy s 

h 

2 

)]
= h S y s +v b s E s , 

∂ 

∂t 

[
α f h 

(
u f + 

αs 

α f 

C 
(
u f −u s 

))]
+ 

∂ 

∂x 

[
α f h 

(
u 2 f + 

αs 

α f 

C 
(
u 2 f −u 2 s 

)
+βx f 

h 

2 

)]

+ 

∂ 

∂y 

[
α f h 

(
u f v f + 

αs 

α f 

C 
(
u f v f −u s v s 

))]
= h S x f +u b f E f , 

∂ 

∂t 

[
α f h 

(
v f + 

αs 

α f 

C 
(
v f −v s 

))]
+ 

∂ 

∂x 

[
α f h 

(
u f v f + 

αs 

α f 

C 
(
u f v f −u s v s 

))]

+ 

∂ 

∂y 

[
α f h 

(
v 2 f + 

αs 

α f 

C 
(
v 2 f −v 2 s 

)
+βy f 

h 

2 

)]
= h S y f +v b f E f . 

(2) 

These solid and fluid momentum equations are rigorously de-

ived ( Pudasaini, 2012 ) and include the solid and fluid momentum
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(  
production terms, the second terms on the right hand sides. One

of the important aspects in these momentum production terms is

that the velocities of the solid and the fluid particles at the bottom

(bed) that have just been eroded, i.e., ( u b s , v b s ; u b 
f 
, v b 

f 
) are different

from the depth-averaged (mean) velocities ( u s , v s ; u f , v f ) that ap-

pear in the inertial (or, the convective) part, and also the source

terms, of the mass and momentum equations. In (2) , the source

terms are as follows: 

S x s = αs 

[
g x − u s 

| u s | tan δp b s − εp b s 
∂b 

∂x 

]
− εαs γ p b f 

[
∂h 

∂x 
+ 

∂b 

∂x 

]
+ C DG 

(
u f − u s 

)| u f − u s | j−1 − C x s 
DV 

u s | u s | αs , (3)

S y s = αs 

[
g y − v s 

| u s | tan δp b s − εp b s 
∂b 

∂y 

]
−εαs γ p b f 

[
∂h 

∂y 
+ 

∂b 

∂y 

]
+ C DG 

(
v f − v s 

)| u f − u s | j−1 − C y s 
DV 

v s | u s | αs , (4)

S x f = α f 

[ 

g x − ε 

[ 

1 

2 

p b f 
h 

α f 

∂αs 

∂x 
+ p b f 

∂b 

∂x 
− 1 

α f N R {
2 

∂ 2 u f 

∂x 2 
+ 

∂ 2 v f 
∂ y∂ x 

+ 

∂ 2 u f 

∂y 2 
− χu f 

ε 2 h 

2 

}

+ 

1 

α f N R A 

{
2 

∂ 

∂x 

(
∂αs 

∂x 

(
u f − u s 

))

+ 

∂ 

∂y 

(
∂αs 

∂x 

(
v f − v s 

)
+ 

∂αs 

∂y 

(
u f − u s 

))}
−

ξαs 

(
u f − u s 

)
ε 2 α f N R A h 

2 

] ]

− 1 

γ
C DG 

(
u f − u s 

)| u f − u s | j−1 − C 
x f 
DV 

u f | u f | α f , 

(5)

S y f = α f 

[ 

g y − ε 

[ 

1 

2 

p b f 
h 

α f 

∂αs 

∂y 
+ p b f 

∂b 

∂y 

− 1 

α f N R 

{
2 

∂ 2 v f 
∂y 2 

+ 

∂ 2 u f 

∂ x∂ y 
+ 

∂ 2 v f 
∂x 2 

− χv f 
ε 2 h 

2 

}

+ 

1 

α f N R A 

{
2 

∂ 

∂y 

(
∂αs 

∂y 

(
v f − v s 

))

+ 

∂ 

∂x 

(
∂αs 

∂y 

(
u f − u s 

)
+ 

∂αs 

∂x 

(
v f − v s 

))}
−

ξαs 

(
v f − v s 

)
ε 2 α f N R A h 

2 

] ]

− 1 

γ
C DG 

(
v f − v s 

)| u f − u s | j−1 − C 
y f 
DV 

v f | u f | α f . 

(6)

The pressures and the other parameters involved in the above

model equations are: 

βx s = εK x p b s , βy s = εK y p b s , βx f = βy f = εp b f , 

p b f = −g z , p b s = (1 − γ ) p b f , 

 DG = 

αs α f (1 − γ ) 

[ εU T {PF(Re p ) + (1 − P) G(Re p ) } ] j , 

F = 

γ

180 

(α f 

αs 

)3 

Re p , G = α
M(Re p ) −1 

f 
, γ = 

ρ f 

ρs 
, Re p = 

ρ f d U T 

η f 

, 

N R = 

√ 

gL Hρ f 

α f η f 

, N R A = 

√ 

gL Hρ f 

A η f 

, α f = 1 − αs , A = A (α f ) . 

(7)
Eqs. (1) are the depth-averaged mass balances for solid and

uid phases respectively, and (2) are the depth-averaged momen-

um balances for solid (first two equations) and fluid (last two

quations) in the x - and y -directions, respectively. 

In the above non-dimensional Eqs. (1) - (2) , x , y and z are the

ocally orthogonal coordinates in the down-slope, cross-slope and

ow normal directions, and g x , g y , g z are the respective compo-

ents of gravitational acceleration. L and H are the typical length

nd depth of the flow, ε = H/L is the aspect ratio, and μ = tan δ
s the basal friction coefficient. C DG is the enhanced generalized

rag coefficient. Simple linear (laminar-type, at low velocity) or

uadratic (turbulent-type, at high velocity) drag is associated with

= 1 or 2, respectively. U T is the terminal velocity of a parti-

le and P ∈ [0 , 1] is a parameter, or a function ( Pudasaini, 2020 ),

hich combines the solid-like ( G) and fluid-like ( F) drag con-

ributions to flow resistance. p b f and p b s are the effective fluid

nd solid pressures. γ is the density ratio, C is the virtual mass

oefficient (enhanced kinetic energy of the fluid phase induced

y solid particles ( Pudasaini and Mergili, 2019 ), M is a func-

ion of the particle Reynolds number ( R e p ), χ includes shearing

f the fluid velocity along the flow depth, and ξ takes into ac-

ount different distributions of αs . A is the mobility of the fluid

t the interface, and N R and N R A , respectively, are the quasi-

eynolds number and mobility-Reynolds number associated with

he classical Newtonian and enhanced non-Newtonian fluid viscous

tresses. C DV are the viscous drag coefficients ( Pudasaini and Hut-

er, 2007 ), akin to Chezy-friction, that can also include the high

ntensity frontal ambient drag in the vicinity of the flow front

 Kattel et al., 2016 ). 

The evolution of basal topography ∂b / ∂t = −E in (1) due to ero-

ion and deposition is explicitly included in the model. With this,

he basal change directly influences the source terms in (3) - (6) by

ccounting for changes that are associated with the driving and

esisting forces in the net force balance. This appears very impor-

ant for geophysical mass flows which are mainly driven by gravity

nd slope changes, i.e., the respective components of gravitational

ccelerations, Coulomb frictions, the basal and hydraulic pressure

radients, and the buoyancy induced terms. 

In the derivation of the model Eqs. (1) - (6) , we have assumed

hat the solid obeys the Coulomb law at the base, and also in

he bed when dealing with the erosion rate (see Section 3 ). How-

ver, at very large particle concentrations, the Coulomb rheology

ould be generalized by applying rate-dependent particle stresses

uch as the phenomenological models based on μ( I ) rheology

 Cassar et al., 2005 ; Jop et al., 2005, 2006 ; Doppler et al., 2007 ;

orterre and Pouliquen, 2008 ), or even more complex, but realis-

ic pressure- and rate-dependent Coulomb-viscoplastic rheologies

 Domnik et al., 2013 ; Pudasaini and Mergili, 2019 ). Furthermore,

undamental approaches based on kinetic theory, which shows that

he particle stresses are rate-dependent, might produce better re-

ults for erosion associated with large particle concentration ( Berzi

nd Fraccarollo, 2015 ). So, the models presented here can further

e extended and generalized to the situation that the stresses are

ate-dependent. 

In general, the model (1) - (6) can be applied to the fluid of any

iscosity, where the effective viscosity increases with the parti-

le concentration mainly of the fines ( Takahashi, 2007 ; Pudasaini

nd Hutter, 2007 ; Pudasaini, 2012 ; Pudasaini and Mergili, 2019 ).

e have applied Coulomb stress for particle or solid-phase. How-

ver, we note that, for the laminar flows, the particle stresses can

cale with the fluid viscosity, as in viscous suspensions ( Ness and

un, 2015 ). For more complex situation with turbulence, e.g., in

he presence of particles, and the contribution of the particle fluc-

uations to the fluid viscosity, we refer to Berzi and Fraccarollo

2015) who, based on the kinetic theory, showed that turbulent



S.P. Pudasaini and J.-T. Fischer / International Journal of Multiphase Flow 132 (2020) 103416 5 

v  

p

3

f

 

m  

(  

i  

r  

t  

a  

c  

t  

m  

t  

A  

c  

a

 

t  

v  

f  

p  

i  

s  

c  

m  

q  

m

 

c  

a  

t  

h  

t  

t

3

 

f  

w  

n  

n  √
 

w  

m

 

c  

s  

s  

i  

p  

b  

t  

m  

t  

b  

t  

τ  

n  

t  

c  

j

 

a  

t  

T  

p  

s  

l  

o  

p  

r  

w

a  

t  

d  

f  

t  

a  

t

i  

t  

l  

e  

t  

r

 

fl  

t  

i

τ

T  

m  

s  

a  

a  

t  

s  

E  

m  

t  

p  

m
 

c  

C  

P  

s  

a

τ

 

s  

t  

a  

t

E

w  

m  
iscosity is a decreasing function of the local volume fraction of

articles. 

. A two-phase, process-based, non-singular mechanical model 

or erosion 

As mentioned in the introduction, two different approaches to

odel the erosion-rates are present in the literature, both of them

mostly) deal with effectively single-phase. The first is the empir-

cal and the second is the mechanical model. Empirical laws are

elatively simple and only involve the overall bulk dynamical quan-

ities, namely the flow depth and/or the bulk velocity coupled with

n empirical erosion factor, E = E 
(
E ri 

emp , hu 
)
. Whereas the mechani-

al erosion models involve the dynamical variables associated with

he flow coupled to several mechanical parameters of the flowing

aterial and the erodible bed, E = E 
(
E ri 

mech 
, h/u 

)
. E ri 

emp and E ri 
mech 

are

he empirical and mechanical erosion-rate intensities ( ri -factors).

dditionally, the evolving basal topography may lead to substantial

hanges, e.g., in increasing or decreasing gravitational components,

nd normal and shear loads. 

One of the major concerns related to erosion is understanding

he process and describing it by mechanical models. Here, we de-

elop a two-phase, process-based, non-singular mechanical model

or erosion-deposition. The non-singularity refers to the finite and

hysically meaningful values of the erosion-rates at the flow-bed

nterface. The mechanical erosion-rate equations can be derived by

imply considering the force balance at the interface between the

ascading debris material and the erodible bed beneath it, and the

omentum flux across the interface ( Drew, 1983 ). Jumps in these

uantities govern the erosion-rates. We develop the erosion-rate

odels for both the solid and the fluid phases. 

However, Jenkins and Berzi (2016) indicated the possibility of

ontinuous velocity field at the interface. This resulted from the

ssumption that the shear stress is continuous at the interface be-

ween the base of the flow and the surface of the bed. The main

ypothesis behind this is that Jenkins and Berzi (2016) assumed

hat the pressure, not the shear stress, is discontinuous at the in-

erface. 

.1. Solid erosion-rate 

The basic model Eqs. (1) - (6) are written in non-dimensional

orm. However, for the better physical understanding, below, first

e develop the erosion rate models in dimensional form. When

eeded, any of the erosion rates developed hereafter can be

on-dimensionalized by considering the assignments: h → Hh, u →
 

gL u, where g is the gravity constant. Final form of models can be

ritten either all in non-dimensional ( Pudasaini, 2012 ), or all in di-

ensional ( Pudasaini and Mergili, 2019 ) form. 

Erosion rates must be developed consistently with the asso-

iated forces appaering in the momentum balance equations de-

cribing the mass flow. First, we deal with the erosion rate for the

olid phase. We consider the stresses on both sides of the erosion

nterface. The sliding mass applies the shear stress τm 

s l 
(along x , the

ositive down-slope flow direction) on the erodible bed, and the

ed applies the shear stress −τ b 
s (opposite to the flow, in nega-

ive direction) against the flowing material. Here, m stands for the

oving debris mixture, l for the lower layer of the moving mix-

ure (so, on the upper side of the interface), and b the erodible

ed (so, on the lower side of the interface), respectively. Therefore,

he resulting shear stress along the singular erodible interface is
m 

s l 
− τ b 

s . This is the shear stress jump across the interface, or the

et shear stress in the system. Here, the singular interface refers to

he surface for which the material properties and/or the dynami-

al quantities are different on the either side of this surface, i.e., a

ump prevails in the relevant quantities across the interface. 
Next, we deal with the momentum flux to the sliding debris,

nd out of the debris generated by the erosion of the bed. Both

he debris and eroded mass move in the positive flow direction.

he x -directional solid mass flux (in the debris mixture) on the up-

er side of the interface is ρm 

s u m 

s l 
αm 

s where ρm 

s is the density of the

olid in the mixture, αm 

s is the volume fraction, and u m 

s l 
is the ve-

ocity of the solid particle at the lowest layer in the mixture (i.e.,

n the upper side of the interface). Similarly, when erosion takes

lace, the x -directional solid mass flux in and of the eroded mate-

ial is given by ρb 
s u 

b 
s α

b 
s where b denotes the quantities associated

ith the erodible layer. So, the mass fluxes ρm 

s u m 

s l 
αm 

s and ρb 
s u 

b 
s α

b 
s 

re positive. As erosion takes place, the interface between these

wo mass fluxes moves in flow perpendicular direction (along z -

irection) into the erodible bed. The speed of the singular inter-

ace between the moving material and the erodible basal layer is

he erosion rate E s (erosion-velocity). The momentum flux (associ-

ted to the eroded material) from bed to the flowing material in-

roduces a propagation of the erosion interface, where E s ρm 

s u m 

s l 
αm 

s 

s the momentum flow into the moving debris. Meanwhile, due

o entrainment, the eroded debris material in the basal surface

oses the mass, and thus, the flow normal momentum flux for the

roded mass is negative: −E s ρb 
s u 

b 
s α

b 
s . This is the amount by which

he momentum is transferred from the eroded basal debris mate-

ial to the flow. 

Erosion is the result of the net shear stress, and the momentum

uxes are induced by the applied shear stresses. Hence, the effec-

ively reduced frictional net shear stress must be balanced by the

nduced net momentum flux: 

m 

s l 
− τ b 

s = E s 
(
ρm 

s u 

m 

s l 
αm 

s − ρb 
s u 

b 
s α

b 
s 

)
. (8) 

his shows that the balance between the net stress and the net

omentum flux results in the propagation of the erosion induced

ingular surface at the velocity E s . The jump in the shear stress

nd the jump in the normal momentum fluxes must be balanced

nd can be written as a single jump in terms of the momen-

um flux: || τs − E s ρs u s αs || + − = 0 , where + , − stands for base of the

liding debris and top of the erodible substrate, respectively, and

 

+ 
s = E −s = E s . This relation can also be derived by applying the mo-

entum jump ( Drew, 1983 ), or the Rankine-Hugoniot jump condi-

ion ( Fraccarollo and Capart, 2002 ). Model as in (8) has also been

resented in Iverson (2012) , but by considering debris bulk mo-

entum equations on either side of the interface. 
One of the major tasks modeling the erosion rate E s is con-

erned with the shear stresses. The granular materials satisfy the
oulomb plastic strength ( Savage and Hutter, 1989 ; Iverson, 1979;
itman and Le, 2005 ; Pudasaini and Hutter, 2007 ). So, the shear
tresses are described by the Coulomb law, and the net shear stress
t the interface is given by Pudasaini (2012) : 

m 

s l 
− τ b 

s = ( 1 − γ m ) ρm 

s g cos ζh μm 

s α
m 

s −
(
1 − γ b 

)
ρb 

s g cos ζh μb 
s α

b 
s 

= g cos ζh 
[
( 1 − γ m ) ρm 

s μ
m 

s α
m 

s −
(
1 − γ b 

)
ρb 

s μ
b 
s α

b 
s 

]
, (9) 

where ζ is the slope angle, 
(
γ m = ρm 

f 
/ρm 

s , γ
b = ρb 

f 
/ρb 

s 

)
ar e the fluid-

olid density ratios, 
(
1 − γ m , 1 − γ b 

)
are the buoyancy induced fac-

ors, ( μm 

s = tan δm 

s , μ
b 
s = tan δb 

s ) are the Coulomb friction coefficients,

nd ( αm 

s , α
b 
s ) are the solid volume fractions on either sides of the in-

erface. So, from (8) and (9) the erosion-rate can be expressed as 

 s = 

g cos ζh 
[
( 1 − γ m ) ρm 

s μ
m 

s α
m 

s −
(
1 − γ b 

)
ρb 

s μ
b 
s α

b 
s 

](
ρm 

s u m 

s l 
αm 

s − ρb 
s u 

b 
s α

b 
s 

)

= 

g cos ζh 
[
( 1 − γ m ) ρm 

s μ
m 

s α
m 

s −
(
1 − γ b 

)
ρb 

s μ
b 
s α

b 
s 

](
ρm 

s λ
m 

s l 
αm 

s − ρb 
s λ

b 
s α

b 
s 

)
u s 

, (10) 

here λm 

s l 
and λb 

s are the erosion drift coefficients that connect the

ean flow velocity u s to both the velocity of the flow at the lower
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level of the flow u m 

s l 
= λm 

s l 
u s , and the velocity of the eroded particles

u b s = λb 
s u s . Here, u m 

s l 
and u b s are the velocities of the (carrier) particles

that are moving on either side of the interface under the influence of

the debris flow velocity field u s . Since u m 

s l 
and u b s are associated with the

different sides of the erosion interface, the coefficients λm 

s l 
and λb 

s are

associated with the mobility, or the conductivity of the erosion. In the

following, we refer to λm 

s l 
and λb 

s as erosion drift coefficients. u s can fur-

ther include the shape factor ( Hutter et al., 2005 ; Christen et al., 2010 ;

Castro-Orgaz et al., 2015 ) that can also be related to the erosion drift

coefficients. The minimum of the lower bounds of the drift coefficients

λm 

s l 
and λb 

s may be zero, but not simultaneously, while the maximum of

their upper bounds may be unity. However, usually, these are distinct

positive quantities, and combined with the possibly different densities

and volume fractions across the interface, result in a non-singular ero-

sion rate (see, later). In principle, both λm 

s l 
and λb 

s are measurable quan-

tities, probably λm 

s l 
is easier to measure than λb 

s . 

The jump in the momentum flux across the interface is in-

duced by the shear stress jump. This is equivalent to the shear

velocity (jump) associated with the jump in the relevant densi-

ties, volume fractions and velocities across the interface. With the

parameters λm 

s l 
and λb 

s , u s constitutes a representative velocity in-

duced by the shearing, because λm 

s l 
, λb 

s ; u m 

s l 
, u b s are the result of the

shearing τm 

s l 
and τ b 

s . So, u s is proportional to the shear velocity u ∗
of the system which is given by the square root of the ratio be-

tween the net shear stress of the system τm 

s l 
− τ b 

s and the relevant

(or, representative) net density across the interface, ρm 

s λ
m 

s l 
αm 

s −

ρb 
s λ

b 
s α

b 
s . That is, u ∗ = 

√ (
τm 

s l 
− τ b 

s 

)/ (
ρm 

s λ
m 

s l 
αm 

s − ρb 
s λ

b 
s α

b 
s 

)
. Since

u s ∝ u ∗ , there exists a proportionality factor ˜ ν such that u s = ˜ ν u ∗.

Thus, u s = 

√ 

ν
(
τm 

s l 
− τ b 

s 

)/ 

√ (
ρm 

s λ
m 

s l 
αm 

s − ρb 
s λ

b 
s α

b 
s 

)
, where ˜ ν = 

√ 

ν

is set for simplicity. The mechanical significance of ˜ ν is discussed

later. Employing this, (10) yields: 

E s = 

√ 

( 1 − γ m ) ρm 

s μ
m 

s α
m 

s −
(
1 − γ b 

)
ρb 

s μ
b 
s α

b 
s √ 

ν
(
ρm 

s λ
m 

s l 
αm 

s − ρb 
s λ

b 
s α

b 
s 

) √ 

g cos ζh 

= E ri 
s 

√ 

g cos ζ h , 

(11)

where 

E ri 
s = 

√ 

( 1 − γ m ) ρm 

s μ
m 

s α
m 

s −
(
1 − γ b 

)
ρb 

s μ
b 
s α

b 
s 

/ 

√ 

ν(ρm 

s λ
m 

s l 
αm 

s − ρb 
s λ

b 
s α

b 
s ) . The relation (11) takes into account

the inertia of the erodible bed material due to density (and the

solid fraction) difference across the interface, i.e., the difference of

these physical properties (and dynamical variables) between the

flowing material and the bed material (mixture). 

The solid erosion rate (11) states that triggering of erosion

(or, beginning of the deposition) process collectively depends on

the erosive capacity due to the shear stress exerted by the flow-

ing mixture ( ( 1 − γ m ) ρm 

s μ
m 

s α
m 

s ) and the inertia or, the resistance

of the bed material 
((

1 − γ b 
)
ρb 

s μ
b 
s α

b 
s 

)
. The effect of the fluid in

the bed can be incorporated through the evolving fluid fraction,(
αb 

f 
= 1 − αb 

s 

)
in the bed. For undrained conditions (e.g., clay ma-

terial), evolving pore fluid pressure can be included through the ef-

fective friction coefficient, ˜ μb 
s . For the drained condition and large

hydraulic conductivity, e.g., the debris composed of gravel, the pore

pressure diffusion is rapid, and that the pore pressure can sim-

ply be modeled by αb 
f 
. Later, we will discuss the situation when

erosion takes place for different dynamical variables, physical and

material parameters and drift coefficients. Similarly, we show how

physically relevant parameters and drift coefficients across the in-

terface can avoid singularity in the erosion rate. 

Note that the formal and complete derivation of the solid ero-

sion rate should also consider the viscous drag terms C x s 
DV 

and C 
y s 
DV 

,

n addition to the Coulomb (shear) stress terms. However, for sim-

licity, we assume that the viscous drag is negligible in compar-

son to the Coulomb stress. So, for the present consideration, we

isregard the viscous stress for solid while constructing the solid

rosion rate. 

educed solid-erosion rates 

A. If the solid and the fluid densities across the interface are

imilar 

(
ρb 

s ≈ ρm 

s ;ρb 
f 

≈ ρm 

f 

)
, then (11) reduces to 

 s = 

√ 

( 1 − γ ) 
(
μm 

s α
m 

s − μb 
s α

b 
s 

)
√ 

ν
(
λm 

s l 
αm 

s − λb 
s α

b 
s 

) √ 

g cos ζh , (12)

here 1 − γ m ≈ 1 − γ b = 1 − γ . 

B. If, in addition, the friction coefficients are close to each other

μm 

s ≈ μb 
s ≈ μ

)
then, (11) further reduces to: 

 s = 

√ 

μ( 1 − γ ) 
(
αm 

s − αb 
s 

)
√ 

ν
(
λm 

s l 
αm 

s − λb 
s α

b 
s 

) √ 

g cos ζh . (13)

Both cases take into account the solid fraction difference across

he interface, which evolves dynamically during the flow. 

.2. Fluid erosion-rate 

We have a fundamental recognition here. The Chezy-type fric-

ion is considered as the fluid moves on a rigid channel and the

hannel applies the Chezy resistance on the fluid. Since, in general,

he fluid in the bed is entrapped as the interstitial fluid in the grain

atrix, the fluid on the moving debris can be thought as moving

n the rigid wall. However, as the fluid in the debris mixture runs

ver the fluid in the bed material, it will exert much less resistance

han if it was the wall of a solid channel. Hence, the Chezy-friction

oefficient here is a very small number, although the fluid in the

ed is surrounded by the grains in the bed. The same applies to

he fluid in the bed as it interacts with the fluid in the debris on

he other side of the interface. 

The viscous drag terms in (3)-(6) have the structure as

C DV ραu | u | which appears from the usual consideration of the

iscous drag force that is proportional to the velocity squared

 Pudasaini and Hutter, 2007 ). In it, C DV has the dimension of [1/m].

ince, following the standard approach ( Chow, 1973 ; Fraccarollo

nd Capart, 2002 ), we model the fluid shear stress with the Chezy-

ype friction, it is preferable to non-dimensionalize C DV . This is

chieved by legitimately dividing C DV by the typical flow depth H

hat corresponds to the flow depth h . So, the new structure of the

iscous drag associated with the fluid takes the from 

h 

H 

C DV ραu 2 ,

n which C DV is now a non-dimensional quantity. Due to the non-

imensional form of C DV , this form of viscous drag has some great

dvantages. First, it keeps the dynamical influence of the flow

epth h as in the viscous stress in the momentum Eqs. (5) - (6) . Sec-

nd, because C DV can now be considered as the Chezy-type friction

oefficient, C m 

f 
, the fluid shear stress will be written henceforth as:

h 

H 

C m 

f 
ρ f α f u 

2 
f . Third, and the most important aspect now is that,

ecause the values of C m 

f 
are constrained in the literature ( Asano

995 ; Sumer et al., 1996 ; Capart et al., 2002 ; Fraccarollo and Ca-

art, 2002 ), we may use those values in simulations. 

Next, we develop the erosion rate for the fluid. Notations are

nalogously defined as for the solid erosion rate. For this, we again

onsider the basic relation between the stress and momentum flux

ump for fluid across the singular surface induced by the erosion
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ropagation normal to the erodible basal surface: 

m 

f l 
− τ b 

f = E f 
(
ρm 

f u 

m 

f l 
αm 

f − ρb 
f u 

b 
f α

b 
f 

)
. (14) 

luid shear stress is described by the Chezy-type relationship

 Chow 1973 ; Fraccarollo and Capart, 2002 ). So, with respect to the

bove recognition and discussion, the erosion rate for fluid can be

xpressed as 

 f = 

τ m 

f l 
− τ b 

f 

ρm 

f 
u 

m 

f l 
αm 

f 
− ρb 

f 
u 

b 
f 
αb 

f 

= 

[ 
C m 

f 
ρm 

f 

(
u 

m 

f l 

)2 
αm 

f 
− C b 

f 
ρb 

f 

(
u 

b 
f 

)2 
αb 

f 

] 
h 

H 

(
ρm 

f 
u 

m 

f l 
αm 

f 
− ρb 

f 
u 

b 
f 
αb 

f 

)

= 

[ 
C m 

f 
ρm 

f 

(
λm 

f l 

)2 
αm 

f 
− C b 

f 
ρb 

f 

(
λb 

f 

)2 
αb 

f 

] 
hu 

2 
f 

H 

(
ρm 

f 
λm 

f l 
αm 

f 
− ρb 

f 
λb 

f 
αb 

f 

)
u f 

= 

[ 
C m 

f 
ρm 

f 

(
λm 

f l 

)2 
αm 

f 
− C b 

f 
ρb 

f 

(
λb 

f 

)2 
αb 

f 

] 
H 

(
ρm 

f 
λm 

f l 
αm 

f 
− ρb 

f 
λb 

f 
αb 

f 

) hu f = E ri 
f u f , 

(15) 

here C m 

f 
, C b 

f 
are the Chezy friction coefficients, and 

 

ri 
f = 

[ 
C m 

f 
ρm 

f 

(
λm 

f l 

)2 
αm 

f 
− C b 

f 
ρb 

f 

(
λb 

f 

)2 
αb 

f 

] 
h 

H 

(
ρm 

f 
λm 

f l 
αm 

f 
− ρb 

f 
λb 

f 
αb 

f 

) , (16) 

s the erosion rate (intensity) factor for fluid. In general, (11) and

15) are the new fundamental mechanical models for the solid and

uid erosion rates, respectively. 

The structures of E s and E f indicate that the erosion rate for

olid scales with 

√ 

gH , but for fluid it scales with 

√ 

gL . However,

e should also consider other physical parameters and the dynam-

cal quantities in E s and E f that determine the actual states and the

agnitudes of these erosion rates. 

educed fluid erosion-rate 

In simple situations, when a condition close to no-slip at the

ed prevails, the fluid velocity at the bed could be negligible or,

t can be much smaller than the mean fluid velocity. This means

hat λb 
f 

may be set identically equal to zero. In such a situation,

16) reduces to the simple expression for the erosion rate factor: 

 

ri 
f = C m 

f λ
m 

f l 

h 

H 

. (17) 

Other reduced but more general expressions than (17) can be

btained, as for the reduced solid erosion rates, by considering

imilarities in fluid densities, the friction coefficients, and/or the

olume fractions across the interface. It is important to note that

s indicated by the erosion drift λm 

f l 
, the fluid erosion rate is pro-

ortional to the intensity of the velocity at the bottom of the flow

ayer that exerts the shear stress on the erodible bed. This is natu-

al. 

The mechanical erosion and erosion-rate models presented here

an be directly extended to multi-phase mass flows with different

hysical and rheological properties of different constituents in the

ixture ( Pudasaini, 2019 ). 

The solid and fluid erosion rates E s and E f must consistently

ake αb 
s and αb 

f 
fractions from the bottom and supply it to the flow.

his is a technical problem. This means, out of the total eroded

aterial, αb 
s and αb 

f 
fractions should be incorporated into the solid

nd fluid components in the moving material. Although E s and E f 
re developed independently, in technical applications the values

f E s and E f can be adjusted by proper choices of, e.g., the solid and

uid erosion drift coefficients, Chezy friction coefficients, and the
hear velocity factor such that αb 
s and αb 

f 
fractions of the eroded

aterial is consistently added to the solid and fluid components

n the moving mass. Otherwise, depending on the flow situation,

he erosion rates would not realistically correspond to the eroded

aterial from the bed. As the fluid erosion rate is a function of

he fluid velocity, for fast flows, the fluid erosion rate can be un-

ealistically high, and in turn, the solid erosion rate can be unreal-

stically low. So, this requires consistent and appropriate selection

f the parameters appearing in the erosion rates. These parameters

hould adjust the erosion rates corresponding to the material com-

osition in the erodible bed. So, any erosion rates that correspond

o the natural events can be obtainable from the fundamental ero-

ion rates (11) and (15) with proper choice of the parameters. 

.3. Further erosion rate models 

The solid and fluid erosion rate models developed so far are

ased on the explicit two-phase debris flow, and two-phase bed.

hese models are essentially based on the solid and fluid stresses,

nd solid and fluid momentum fluxes across the interface between

he moving debris material and erodible bed. Further models for

rosion rates can be readily obtained by combining stresses and

omenta in different ways. For example, consider the two-phase

ebris dynamics with explicit shear stresses for the solid and fluid
m 

s l 
and τm 

f l 
, but a bulk resisting shear stress for the basal erodible

ubstrate, say τ b 
B 
, representing both the solid and fluid stresses in

he mixture. So, the jump in the shear stress is 

(
τm 

s l 
+ τm 

f l 

)
− τ b 

B 
.

or the momentum fluxes, the above solid and fluid fluxes can

e appropriately combined, either phase-wise (or, with barycen-

ric velocities and densities). Then, however, instead of two differ-

nt erosion rates, now, only one bulk erosion rate E B emerges. The

olid and fluid erosion rates can still be expressed as E s = αb 
s E B ,

nd E f = αb 
f 
E B . As it is straightforward, we do not further consider

he full derivation here. Nevertheless, this involves two additional

arameters, one representing the fluid pressure in the bed that ap-

ears due to Terzaghi effective stress ( Iverson and Denlinger, 2001 ;

udasaini et al., 2005 ; Iverson, 2012 ), and the other parameter con-

ecting fluid velocity to the solid velocity, say a velocity drift co-

fficient ( Khattri and Pudasaini, 2018 ). However, both of these pa-

ameters might not have a simple mechanical constrain. Further

ifficulties may appear in obtaining expressions for erosion drift

oefficients λm 

s l 
and λb 

s , and the shear factor ν . Moreover, the ero-

ion rates thus constructed may, or may not be better than those

btained previously in Section 3.1 and Section 3.2 . Further models

an be developed that include cohesion. The models presented in

ection 3.1 and Section 3.2 generalize and extend the bulk mixture

rosion rate models in ( Fraccarollo and Capart, 2002 ) and Iverson

2012) to two-phase erosion rate models. 

. The erosion mechanics: stronger gains, weaker loses 

.1. Erosion enhances mobility: solving the dilemma of mass flow 

obility 

Usually, erosion related geophysical mass flows are more mo-

ile than without erosion. However, this fact has never been ex-

lained mechanically explicitly and unambiguously. In literature,

ome mention that erosion results in shorter travel distance due

o the energy lost in erosion ( Le and Pitman, 2009 ; Crosta et al.,

013, 2015 ). It has also been argued that other than erosion

here must be some further mechanisms causing higher mobil-

ty. While others present results showing that due to the added

ass, the debris travels longer distance ( Iverson, 1997 ; Hungr

t al., 2005 ; McDougall and Hungr, 20 05 ; Rickenmann ,20 05 ;
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Godt and Coe, 2007 ; Mangeney et al., 2007, 2010 ; Bouchut et al.,

2008 ; Reid et al., 2011 ). However, no clear explanation and deriva-

tion exists to mechanically explicitly describe the state of mobility.

Incompatible and conflicting thoughts and results are presented

( Chen et al., 2006 ; Mangeney et al., 2007, 2010 ; Le and Pitman,

2009 ; Crosta et al., 2015 ). This is a long standing dilemma in mass

flow mobility associated with erosion. We address this issue here. 

The erosion resulting in higher geophysical mass flow mobil-

ity can be described mechanically, and quantitatively when the

mass and momentum productions are consistently and physically

correctly included into the mass and momentum equations. Con-

sider (the x -component of) the solid-type flow or, solid component

in the mixture flow. The following descriptions also apply to fluid

component, and two-phase mixture mass flows. We should always

consider that erosion takes place only when the bed is mechani-

cally weaker in relation to the flowing material itself. First, assume

that no erosion takes place. Then, during the motion momentum

is dissipated as frictional stress in the momentum balance by the

Coulomb friction term, the second term on the right hand side of

(3) . Next, consider that due to the presence of a weaker bed, ero-

sion takes place. The relatively weaker bed introduces effectively

reduced frictional stress. This reduced stress, which is a positive

quantity, is balanced by the system consistently and rigorously,

matching the additional (produced) momentum, and eroded mass.

This appears systematically and exactly in the momentum balance

(2) , the quantity u b s E s (the second term on the right hand slide of

the first equation). Alternatively, mathematically this can also be

explained as: mass production (erosion) leads to the correspond-

ing momentum production, which is equivalent to the effectively

reduced frictional stress. Yet, importantly, as the mass is added

into the system, the gravity load immediately accelerates the to-

tal mass (initially triggered plus the newly added mass) down the

entire travel distance. This further enhances the flow mobility, be-

cause the erosion-induced added mass implies added potential en-

ergy into the system. 

In Section 4.3 , we show that τm 

s l 
− τ b 

s is equivalent to u b s E s . On

the one hand, from the mechanical point of view, we could have

reduced the shear stress due to erosion by replacing τm 

s l 
by τ b 

s ,

where τm 

s l 
> τ b 

s , thus reducing the total stress by the amount τm 

s l 
−

τ b 
s , and do not include the momentum production, u b s E s . However,

in this situation, only erosion is considered, and not the entrain-

ment and transport of the eroded mass. On the other hand, the in-

corporation of the kinematic and dynamic boundary conditions in-

dicates that inclusion of the mass and momentum productions into

the mass and momentum balance equations is essential, and while

doing this, we do not need to additionally adjust the shear stress

in erosion; the shear stress τm 

s l 
works compatibly with the momen-

tum production, u b s E s . The basic model Eqs. (1) - (6) are developed

consistently following these mechanical processes. In total, the mo-

mentum production u b s E s , and the gained potential energy due to

added mass that induces extra driving gravity load ρb 
s α

b 
s h E g sin ζ ,

where h E is the erosion depth (or area, or volume, chosen con-

sistently with dimension of the problem) results in higher mobil-

ity. The actual total gravity load is αm 

s h g sin ζ

(
1 + 

ρb 
s α

b 
s h E 

ρm 

s α
m 

s h 

)
. This

explains the higher mobility associated with the erosion in mass

flow. So, we solved the long standing dilemma of erosion related

mobility of geophysical mass flows. With respect to the arguments

of erosion induced decreased mass flow mobility, this is (or, can be

perceived as) a paradigm shift. 

4.2. Deposition as reverse erosion process 

Next, we show that mechanically, deposition is the reversed

process of erosion. Another unsolved problem in mass flow is
bout deposition. Some mention that deposition can be modelled

ust by considering the negative of the erosion process ( McDougall

nd Hungr, 2005 ; Iverson, 2012 ). Others dispute that deposition

rocess cannot always be described this way (see, e.g., Issler, 2014 ).

owever, there exists no clear derivation and explanation for why

his is mechanically right, or not right, to consider deposition as

egative process of erosion. One may think of the rocketing ef-

ect when the mass is lost in deposition if this is just described as

he reverse process of erosion. However, this is not the situation in

ass flow as the deposition results from the external shear resis-

ance from the basal material ( Hungr, 1990 ; Iverson, 2012 ). Here,

e make it clear, that fundamentally the same process can also

e applied to physically correctly describe the deposition which is

chieved by consistently reversing the erosion process. The deposi-

ion process begins not when the sliding mass starts to lose (leave)

ome portion of its mass and give it to the basal surface that, as

e may think, would lead to rocketing (thrust) resulting in accel-

ration (which is the wrong concept in mass flow). But, the depo-

ition begins as soon as the bed starts to decelerate (the frontal

art or, the lower layer of) the flow due to the higher frictional

esistance of the bed than that of the flowing material. Deposition

equires further conditions to be fulfilled. Dynamically deposition

ollows decelerating state, i.e., ∂ u / ∂ t < 0. Then, deposition preferen-

ially takes place, e.g., where the bed friction angle is higher than

he slope angle, i.e., δ > ζ . Thus, during deposition, as the basal

urface starts to gain the mass, it results in relatively increased

hear stress in the deposition area, τ b 
s , which is larger than τm 

s l 
.

his effectively increased frictional stress, −(τm 

s l 
− τ b 

s ) , is mechani-

ally and appropriately balanced by the momentum loss, −u b s E s , in

he momentum balance equation. Here, the negative sign appears

ue to the reverse process −E s , as also clearly seen in −(τm 

s l 
− τ b 

s )

or deposition as compared to (τm 

s l 
− τ b 

s ) for erosion. Fundamen-

ally the same mechanical process of erosion applies, but reversely,

o the deposition process. So, ‘stronger gains, weaker loses’ - this

s the mechanical process in geophysical mass flow. That is, dur-

ng the erosion process, mass is gained by the flow, whilst during

eposition, mass is gained by the basal substrate. 

As the mass enters into the run-out zone, or any mechanically

tronger region, that takes into account the above mentioned fur-

her conditions, deposition process is triggered, may be weakly,

lowly, or rapidly. But, then due to deposition process, the de-

osited material is compacted, interlocking among the grain de-

elops, effective friction increases as the mass transforms from

ynamic to static state ( Pudasaini et al., 2007 ) and as the rela-

ively large amount of fluid (if exists in the mixture) runs off, and

he solid volume fraction may increase substantially. Furthermore,

he driving gravity force is reduced (in transition), or largely re-

uced (in run-out zone). All these result in enhancing the effec-

ive strength of the material in the dynamically evolving basal sur-

ace. Then, when some or all of these mechanisms are in effect,

he deposition process amplifies. The deposition process will reach

ts final stage, and the mass fully comes to a standstill as soon as

 s → 0. This means, the previously moving mass is now the part of

he basal surface, and thus, there is no moving mass. 

.3. Balance of effective reduced frictional stress and momentum 

roduction in erosion 

Now, we prove that the effectively reduced frictional dissipa-

ion and momentum production are equivalent. First, assume the

on-erosional situation for which the shear resistance against the

otion of the debris is −τm 

s l 
= −( 1 − γ m ) ρm 

s g cos ζhμm 

s α
m 

s . Next,

ssume the situation when erosion takes place. The basal substrate

pplies the shear stress −τ b 
s = −

(
1 − γ b 

)
ρb 

s g cos ζhμb 
s α

b 
s on the

liding debris. Therefore, the momentum balance must be adjusted
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u  
y replacing −τm 

s l 
by −τ b 

s in the corresponding Coulomb frictional

esistance. And, the difference −τ b 
s − (−τm 

s l 
) = τm 

s l 
− τ b 

s , as com-

ared to τm 

s l 
, constitutes the net-momentum gain. The reduction

n the Coulomb frictional dissipation (i.e., momentum gain) is
m 

s l 
− τ b 

s = g cos ζh 
[
( 1 − γ m ) ρm 

s μ
m 

s α
m 

s −
(
1 − γ b 

)
ρb 

s μ
b 
s α

b 
s 

]
/ρm 

s α
m 

s , 

here ρm 

s α
m 

s in the denominator appears due to the

ass fraction factor in the momentum balance equation.

hereas from (10) , the momentum production is u b s E s =
b 
s g cos ζh 

[
( 1 − γ m ) ρm 

s μ
m 

s α
m 

s −
(
1 − γ b 

)
ρb 

s μ
b 
s α

b 
s 

]
/ (ρm 

s λ
m 

s l 
αm 

s −
b 
s λ

b 
s α

b 
s ) , where the factor λb 

s in the numerator appears due to the

erm u b s /u s in the momentum production. These two expressions

re connected in two ways. Either we can consider that these two

omentum exchange quantities are equal (or, equivalent), or for a

articular choice of λb 
s , these two expressions are equal. In both

ases, we obtain the erosion drift (coefficient) equation: 

m 

s l 
= 

(
1 + 

ρb 
s 

ρm 

s 

αb 
s 

αm 

s 

)
λb 

s . (18) 

This is a unique expression connecting λb 
s with λm 

s l 
via the ra-

ios of the densities ρb 
s / ρ

m 

s , and the volume fractions αb 
s /α

m 

s on ei-

her side of the interface. Since both λm 

s l 
and λb 

s are bounded from

bove by unity, for erosional configuration, αm 

s must be suitably

ounded away from zero from below (see later). 

This clearly proves (or, demonstrates) that the erosional config-

ration reduces the frictional dissipation. This can be included into

he system either by appropriately replacing −τm 

s l 
by −τ b 

s in the

rictional dissipation term, or simply through momentum produc-

ion term that emerges formally and systematically. The momen-

um gained by effectively reducing the frictional stress (τm 

s l 
− τ b 

s ) is

quivalent to the momentum production u b s E s . Thus, without con-

idering the momentum gain by reducing the friction, i.e., by sim-

ly using the Coulomb friction −τ b 
s − (τm 

s l 
− τ b 

s ) = −τm 

s l 
, the mo-

entum production u b s E s introduces additional momentum into

he system. This means, non-erosional setting loses more momen-

um in friction than the erosional setting. So, relatively, momentum

s gained in erosion. This effective momentum production results

n higher mass flow mobility. 

Similar analysis also applies for fluid, for which the frictional

esistance is quadratically proportional to the flow velocity (vis-

ous drag). Without involving these complications of finding suit-

ble pre-existing terms in the momentum balance equations, i.e.,

he Coulomb and viscous drag, by simply following the rigorous

erivations, the gained momentum, due to effectively reduced fric-

ion in erosional setting, can be systematically included into the

ystem via the momentum production terms for both the solid and

uid phases. 

The erosion drift coefficient for the fluid phase can be derived

imilarly to Eq. (18) . In simple situation when h / H ≈ 1, we obtain: 

m 

f l 
= 

( 

h 

H 

+ 

ρb 
f 

ρm 

f 

αb 
f 

αm 

f 

) 

λb 
f ≈

( 

1 + 

ρb 
f 

ρm 

f 

αb 
f 

αm 

f 

) 

λb 
f . (19) 

s for the solid, for erosional configuration, αm 

f 
must be suitably

ounded away from zero from below. 

. Discussions on erosion drifts, shear velocity factor and 

rosion-rates 

.1. Erosion drifts 

The two different erosion drift coefficients (for solid) λm 

s l 
and λb 

s 

merge due to the jump in velocity on either side of the mobile

ingular surface. For erosion to take place, these parameters must

ppear, in general be distinct, or non-zero and positive. This is a
esult of the triggering requirement for the erosion, i.e., the applied

hear stresses on either side of the singular surface are not equal,

nd that there is a jump in the momentum flux. For mechanically

trong bed material λb 
s is very small. The value of λm 

s l 
, however,

epends on the velocity profile of the moving material. For strong

asal shearing λm 

s l 
is smaller, but for more plug-like flow, λm 

s l 
is

lose to unity. For weaker bed material λb 
s may be large, but could

till be much smaller than λm 

s l 
. This can be better explained with

he erosion drift Eq. (18) with several very important implications.

I. The densities 
(
ρb 

s , ρ
m 

s 

)
and the volume fractions 

(
αb 

s , α
m 

s 

)
are

ositive quantities. Since the particles in the debris motion slip

long the basal surface, the velocity of the eroded particle must

e non-zero positive and this velocity must be smaller than the

elocity of the flow. Thus, the erosion drift Eq. (18) implies that
m 

s l 
> λb 

s , and λb 
s > 0 . So, it is mechanically incorrect to set λb 

s = 0 ,

r u b s = 0 . This is intuitively clear and natural condition for erosion

o take place, but contradicts prevailing considerations ( Fraccarollo

nd Capart, 2002 ; Iverson, 2012 ; Pirulli and Pastor, 2012 ; Frank et

l., 2017 ). 

II. Rapid erosion (as λb 
s → λm 

s l 
or, λb 

s → 1 ) is a result of a me-

hanically significantly weaker basal material than the flowing ma-

erial (in terms of the density, and/or the bed that consists of a

uid-type material, i.e., small αb 
s ). 

III. If ρb 
s < ρm 

s and αb 
s < αm 

s , or ρb 
s α

b 
s < ρm 

s α
m 

s then, λb 
s > 

1 

2 
λm 

s l 
.

his situation appears when the bed is mechanically weaker than

he flowing material (in terms of the solid densities and volume

ractions, or the mass fraction component) and implies that the

roded particle moves with relatively higher velocity. On the other

and, if ρb 
s > ρm 

s and αb 
s > αm 

s , or ρb 
s α

b 
s > ρm 

s α
m 

s then, λb 
s < 

1 

2 
λm 

s l 
.

o, when the bed is stronger as compared to the flow, in terms

f the mass fraction component, then the eroded particle moves

ith relatively slower velocity. These are intuitively clear phenom-

na and imply the most simple possible numerical domains for λm 

s l 

nd λb 
s : λ

m 

s l 
∈ (0 , 1) and λb 

s ∈ (0 , 1) or, λb 
s ∈ (0 , 1 / 2) . This provides

n engineering solution to a long-standing problem of erosion ve-

ocity. 

As the volume fractions of solid in the flowing layer and the

rodible bed can vary from very small to very large value (close

o unity), the velocity of the erodible material can thus vary from

lmost zero value to almost the value of the mean velocity of the

ow. Similarly, the velocity of the eroded material also depends on

he material densities on either side of the interface that evolve

uring the flow. So, (18) reveals that the velocity of the eroded ma-

erial varies from very small value to as high as the velocity of the

ean flow. This means that the velocity of the eroded material be-

ow the flow is less than the velocity of the top flowing layer. This

s in line with the experiments and numerical simulations ( du Pont

t al., 2005 ; Doppler et al., 2007 ). Furthermore, we note that, in

he experiment with rotating drum, du Pont et al. (2005) showed

hat the velocity profile below the free-surface of the avalanch-

ng grains decreases rapidly along the depth. Such a profile has

lso been observed and simulated in a study with water-immersed

ranular avalanches in a rectangular cell by Doppler et al. (2007) .

owever, the depth-resolution of the velocity of the mobile mate-

ial below the avalanching material is not within the scope of the

epth-averaged modelling frame. This is because, we consider the

wo-layer material, upper flow layer and the bottom erodible layer,

nd the interface between these two, but no resolution between

hese layers. This means that, the dynamics of the mobile flow

epth in rotating drum ( du Pont et al., 2005 ) and water-immersed

ranular avalanches in a rectangular cell ( Doppler et al., 2007 ), and

he erosion situation in this contribution, however, are different. 

IV. In simple situations for which the solid densities and vol-

me fractions on either side of the interface are the same (i.e.,
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ρb 
s = ρm 

s ;αb 
s = αm 

s ), then (18) reduces to λb 
s = 

1 

2 
λm 

s l 
. This means the

velocity of the eroded particle is one half of the velocity of the par-

ticle at the base of the debris flow. 

V. The coefficient λm 

s l 
provides information on the velocity pro-

file through the flow depth that, in applications, can be assumed

to be parabolic or plug-type. Plug flow consideration is compati-

ble with the depth-averaged shallow flows. For the simple plug-

type flow λm 

s l 
≈ 1 . Then, for ρb 

s = ρm 

s and αb 
s = αm 

s , (18) implies

λb 
s = 1 / 2 . Such a value has also been obtained by Le and Pitman

(2009) by utilizing kinetic theory ( Jenkins and Savage, 1983 ). So,

the drift Eq. (18) appears to be rich in explaining the erosion dy-

namics. Thus, with the knowledge of the velocity profile, e.g., the

plug flow, (18) is closed because, αm 

s is a dynamical quantity, αb 
s 

is known or, another dynamical quantity, and the densities are

known quantities. 

VI. Similar analysis holds for the fluid. In general, both λm 

f l 
and

λb 
f 

can be (much) smaller than λm 

s l 
and λb 

s , respectively. Since

the fluid constituent in the flowing debris may consist of a mix-

ture of water, silt, clay and other fine particles ( Pudasaini and

Mergili, 2019 ), in general ρm 

f 
> ρb 

f 
, as the fluid in the bed material

is mostly pure water. With αm 

f 
> αb 

f 
, this implies that λb 

f 
> 

1 

2 
λm 

f l 
.

Nevertheless, λb 
f 

≈ 1 

2 
λm 

f l 
holds when the flowing fluid in the debris

is mostly water. 

5.2. Shear velocity factor 

The shear velocity factor ˜ ν is the transformation factor between

the effective (relative) erosional shear stress and effective veloc-

ity jump in erosional situation, and the mean velocity of the flow.

Depending on the density jump, it can be large when λm 

s l 
− λb 

s is

large. In simple situations, some typical values of ˜ ν could be con-

sidered. Next, we derive an expression for ν = ˜ ν2 . For this, consider

the balance between the momentum gained by effectively reduced

Coulomb friction, and the momentum production u b s E s from (11) : 

1 

ρm 

s α
m 

s 

[ 
( 1 −γ m ) ρm 

s μ
m 

s α
m 

s −
(
1 −γ b 

)
ρb 

s μ
b 
s α

b 
s 

] 
g cos ζh 

= 

√ 

( 1 −γ m ) ρm 

s μ
m 

s α
m 

s −
(
1 −γ b 

)
ρb 

s μ
b 
s α

b 
s √ 

ν
(
ρm 

s λ
m 

s l 
αm 

s −ρb 
s λ

b 
s α

b 
s 

) √ 

g cos ζh λb 
s u s . (20)

If we are interested in the order of magnitude estimation for the

factor ν , we should apply the ordering for h and u s , i.e, typical flow

depth H and the typical flow velocity 
√ 

gL , and consider the rele-

vant ordering. With ε = H/L, (20) reduces to 

1 

ν
≈

ε cos ζ
[
( 1 − γ m ) ρm 

s μ
m 
s −

(
1 − γ b 

)
ρb 

s μ
b 
s α

b 
s /α

m 
s 

](
ρm 

s λ
m 
s l 

− ρb 
s λ

b 
s α

b 
s /α

m 
s 

)
(
ρm 

s λ
b 
s 

)2 
.

(21)

In simple situations when the densities and the friction coefficients

across the interface are similar (i.e., ρm 

s ≈ ρb 
s , ρ

m 

f 
≈ ρb 

f 
; μm 

s ≈ μb 
s =

μ), and if the plug-type flow is considered ( λm 

s l 
≈ 1 ), (21) , with

(18) , reduces to 

1 

ν
= ε(1 − γ ) cos ζμ

(
1 −

(
αb 

s / α
m 

s 

)2 
)
, (22)

which is positive for αm 

s > αb 
s . If λb 

s takes the value close

to 1/2, then (21) can be further reduced to have some idea

about the order of magnitude estimate for ν: 1 /ν ≈ 2 ε(1 −
γ ) cos ζμ

(
1 − αb 

s / α
m 

s 

)
. These show that, if in addition, the volume

fractions (concentrations) across the interface are similar, erosion

does not take place. For the considered simplifications erosional

state automatically requires that αm 

s > αb 
s . So, as αb 

s > 0 in realistic

situations, no singularity appears. 
.3. Erosion-rates 

Here, we discuss some important physical and mechanical as-

ects of the solid erosion model (11) . Together with the closure for

he shear velocity factor (21) , the solid erosion rate reduces to: 

 s = 

( 1 − γ m ) ρm 

s μ
m 

s −
(
1 − γ b 

)
ρb 

s μ
b 
s α

b 
s /α

m 

s 

ρm 

s λ
b 
s 

cos ζ
√ 

ε gh . (23)

he model (11) or, (23) explicitly shows, that for erosion to take

lace, at least one of the four parameters or, the dynamical vari-

bles, must have a jump across the interface. These are, the buoy-

ncy factors 
(
1 − γ m , 1 − γ b 

)
, the solid densities ( ρm 

s , ρ
b 
s ), friction

oefficients ( μm 

s , μ
b 
s ), and the volume fractions ( αm 

s , α
b 
s ). 

For bed material with a similar density to the flowing material

 ρm 

s = ρb 
s , ρ

m 

f 
= ρb 

f 
) and an erosion drift coefficient of λm 

s l 
= 1 , the

rosion rate (23) , with (18) , reduces to: 

 s = ( 1 − γ ) 

(
μm 

s − μb 
s 

αb 
s 

αm 

s 

)
cos ζ

√ 

ε gh 

(
1 + 

αb 
s 

αm 

s 

)
. (24)

Further reduction is possible if the frictional (or, mechanical)

imilarity prevails ( μm 

s = μb 
s = μ), 

 s = ( 1 − γ ) μ
(

1 −
(
αb 

s / α
m 

s 

)2 
)

cos ζ
√ 

εgh 

= 

[ 
( 1 − γ ) μ

(
1 −

(
αb 

s / α
m 

s 

)2 
)

cos ζ
√ 

εg 

] √ 

h = E ri 
s e 

√ 

h . 

(25)

If λb 
s ≈ 1 / 2 was appropriate, then E ri 

s e 
would have been reduced

o: E ri 
s e 

= 2 ( 1 − γ ) μ
(
1 − αb 

s / α
m 

s 

)
cos ζ

√ 

εg . This shows that the ef-

ective erosion rate intensity factor E ri 
s e 

is essentially driven by the

ontrast in the volumetric concentrations of the solid in the flow-

ng material and the bed. E ri 
s e 

attains bounded values even for very

ow solid concentration, say αm 

s = 0 . 05 . For the typical values of

f = 1 , 100 kg m 

−3 , ρs = 2 , 700 kg m 

−3 , δ = 25 ◦, ζ = 45 ◦, ε =
 . 0 × 10 −3 (see Section 6.1 for parameter choice), E ri 

s e 
≈ 0 . 003 for

 reasonable choice of αm 

s = 0 . 63 and αb 
s = 0 . 60 . If the solid con-

entration in the mixture is even below αm 

s = 0 . 05 then, its ef-

ect in the mixture can be effectively neglected, because, in such

 particle-laden, very dilute flow, due to the relatively large mean

ree paths for the solid particles, the grain frictional effects remain

nsignificant and the flow behaves as macroviscous ( Pudasaini,

011 ). So, essentially, even the reduced model (25) does not con-

ain singularity. However, in general, the basic model (11) should

e considered that avoids singularity due to the complex compo-

itions of material parameters and dynamical variables. By using

on-stretched coordinates, i.e., ε = 1 , and other choice of parame-

er values, E ri 
s e 

may even attain values on the order of 10 −3 − 10 0 .

owever, depending on the physical parameters, and mechanics

nd dynamics of flow, following (11) , this range can change. 

Due to the presence of different magnitudes in the physical pa-

ameters and the dynamical variables across the interface (i.e., the

olid and fluid densities and volume fractions) erosion may occur

ven for the seemingly not possible but plausible relation μb 
s > μb 

m 

or friction coefficients. Because usually one thinks only frictionally

eaker basal layer could be eroded. The further important aspects

f the new model (11) are as follows. 

I. It appears that erosion is not necessarily and directly de-

endent on the velocity but depends on the competition between

he mechanical strength of the flowing debris and bed material:

( 1 −γ m ) ρm 

s μ
m 

s α
m 

s −
(
1 −γ b 

)
ρb 

s μ
b 
s α

b 
s 

)
. So, the erosion can take place

ven in a relatively slow movement, and may not necessarily take

lace even in rapid mass movements. Examples include, a strong

ed with very low pore fluid pressure, or totally unsaturated, dry
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ubstrates. The erosion process is primarily governed by the ma-

erial properties of the moving debris and bed, and the dynamical

ariables. 

II. The erosion magnitude is proportional to the material load,

 cos ζh , and inversely proportional to the effective net density, or

he mass fraction 

(
ρm 

s λ
m 

s l 
αm 

s − ρb 
s λ

b 
s α

b 
s 

)
, and the typical velocity

actor ν close to the bed. Analytical closers for the coefficients λm 

s l 
,

b 
s and ν , have been derived in Section 4.3 and Section 5.2 . 

III. 
√ 

g cos ζ h in (11) has exactly the dimension of velocity. So,

o bold and odd dimension appears as in the empirical models

e.g., McDougall and Hungr (2005) ): E ri 
emp hu, in which E ri 

emp has a

imension of [1/m]. 

IV. Erosion initiates mechanically if 

( 1 −γ m ) ρm 

s μ
m 

s α
m 

s −
(
1 −γ b 

)
ρb 

s μ
b 
s α

b 
s 

]
>0 . Then, the ero- 

ion velocity, 
√ 

g cos ζh is amplified by the overall factor
 

( 1 −γ m ) ρm 

s μ
m 

s α
m 

s −
(
1 −γ b 

)
ρb 

s μ
b 
s α

b 
s / 

√ 

ν(ρm 

s λ
m 

s l 
αm 

s −ρb 
s λ

b 
s α

b 
s ) 

hat depends on αm 

s and αb 
s , which evolve with the dynamics

f the fluid in the debris material and erodible bed. This is pos-

ible only with the two-phase mass flow model but not with

ingle-phase mass flow models. 

Similar discussions can be obtained for the fluid erosion-rate

15) . However, since the fluid flow dynamics and the mechani-

al responses are different from the solid, the fluid erosion rate

s also fundamentally different. This is expressed in (15) which

hows that the fluid erosion-rate (erosion velocity) is proportional

o the mean fluid velocity in the moving debris mass. Whereas the

rosion rate (intensity) factor E ri 
f 

includes all the fluid dynamical

nd mechanical variables and the physical parameters. These are

he flow height, and the Chezy parameters, fluid densities, volume

ractions, and the erosion drifts associated with the fluid. Erosion

akes place as long as 

[
C m 

f 
ρm 

f 

(
λm 

f l 

)2 

αm 

f 
− C b 

f 
ρb 

f 

(
λb 

f 

)2 

αb 
f 

]
> 0 . As

or the solid, the typical values of the erosion-drifts can be esti-

ated. The Chezy parameters are determined by the flow config-

ration, or can also be chosen as some suitable numerical param-

ters ( Chow, 1973 ; Fraccarollo and Capart, 20 02 ). C m 

f 
≈ 0 . 0 04 is a

easonable value as explained at Section 3.2 . Further H ≈ 2.0 is an

dmissible choice. Then, for the erosional setting, typical value of

he fluid related parameter can be chosen as λm 

f l 
= 0 . 9 . With this,

rom (17) the effective fluid erosion rate intensity factor can be es-

imated as E ri 
f e 

= 0 . 002 , where the flow height h is included in the

ynamic simulation. Again, depending on the choice of the param-

ters and variables involved in E ri 
f e 

, its numerical values may devi-

te substantially from 0.002. 

. Application of the new model and simulation results 

.1. Numerical method, simulation set-up and parameters 

The model Eqs. (1) - (6) constitute a set of well-structured, non-

inear hyperbolic-parabolic partial differential equations in con-

ervative form with complex source terms. These model equa-

ions are used to compute the total depth h , solid volume frac-

ion αs , velocity components for solid ( u s , v s ) and fluid 

(
u f , v f 

)
n x - and y -directions, respectively, and the evolution of the

rodible (depositional) basal surface, b , as functions of space

nd time. The model equations are solved in conservative vari-

bles W = (h s , h f , b, m x s , m y s , m x f 
, m y f 

) t , where h s = αs h, h f =
f h are the solid and fluid contributions to the debris mixture,

r the flow depth; and (m x s , m y s ) = (αs hu s , αs h v s ), (m x f 
, m y f 

) =
(α f hu f , α f h v f ) , are the solid and fluid momenta. This facili-

ates numerical integration even when shocks are formed in the

eld variables ( Pudasaini, 2012 ; Kattel et al., 2016 ). Shock for-
ation is an essential mechanism in geophysical mass flows

hen the flow becomes subcritical from its supercritical state

 Pudasaini, 2014 ). It is therefore natural to employ conserva-

ive high-resolution numerical techniques that are able to resolve

he steep gradients and moving fronts often observed in exper-

ments and field events but not captured by traditional finite

ifference schemes. So, simulations are performed with a high-

esolution shock-capturing nonoscillatory central differencing, to- 

al variation diminishing scheme ( Nessyahu and Tadmor, 1990 ; Tai

t al., 2002 ; Pudasaini and Hutter, 2007 ). Advantages of the ap-

lied unified simulation technique and the corresponding compu-

ational strategy have been explained in Pudasaini (2014) , Kafle

t al. (2016) , Kattel et al. (2016) for the two-phase subaerial de-

ris flows, glacial lake outburst floods, submarine flows and subse-

uent tsunamis. For a better interpretation the simulations are per-

ormed in dimensional form. As simulation domain, we consider a

wo-dimensional debris flow down an inclined channel. The ini-

ial uniformly distributed, homogeneous mixture debris is released

rom the top of the channel. The parameter values chosen for sim-

lation are: ζ = 45 ◦, φ = 35 ◦, δ = 25 ◦, ρ f = 1 , 100 kg m 

−3 , ρs =
 , 700 kg m 

−3 , N R = 30 , 0 0 0 , N R A = 1 , 0 0 0 , Re p = 1 , U T =
 . 0 m s −1 , P = 0 . 75 , j = 1 , χ = 3 , ξ = 5 , C = 0 . 5 , C s 

V D 
=

 . 0 0 0 01 , C 
f 

V D 
= 0 . 0 02 . These parameter selections are based on the

hysics of the two-phase mass flows ( Pudasaini, 2012, 2014 ; Kafle

t al., 2016 ; Kattel et al., 2016 ). As estimated in Section 5.3 , the

ffective erosion rate intensity factors for the solid and fluid are

E ri 
s e 

, E ri 
f e 

)
= (0.0 03, 0.0 02). These factors can be obtained with

ome appropriate combinations of physically meaningful values of

, μ, α, ν , λ, etc., for solid, and corresponding physical parameters

or fluid. 

The relatively higher solid and relatively lower fluid erosion in-

ensity factors can be justified because E ri 
s e 

is the multiple of 
√ 

h

hile E ri 
f e 

is the multiple of hu f . So, the actual erosion rates E s and

 f are also controlled by the flow dynamics. Moreover, due to the

resence of hu f , with those erosion rate intensity factors, the ac-

ual fluid erosion rate is substantially higher than the solid, such

s the entrainment of the glacial ice that quickly amplifies the fluid

omponent in the mixture much faster than the solid component,

 situation similar to the 2017 Piz-Cengalo Bondo landslide event

n Switzerland ( Mergili et al., 2020b ). However, in situations when

he solid entrainment rates are higher than the fluid, the values of

 s and E f must be constructed accordingly from (11) and (15) . 

We also mention that, following Kattel et al. (2016) , in the

icinity of the flow front (about 20 m) the frontal drag has been

pplied by increasing the viscous drag applied to other regions

ith the coefficient of 0.45, while the viscous drag coefficients in

ther regions are 0.0 0 0 01 for solid and 0.002 for fluid. The frontal

rag produces the front surge ( Kattel et al., 2016 ) often observed

n debris flows. 

.2. Erosion and frontal surge dynamics, and effects of mass and 

omentum productions 

Fig. 1 shows the time evolution of the flow depth and erosion

epth as a two-phase debris mass moves down an inclined erodi-

le slope. A 3 m erodible layer extends from x = 10 m to 325 m

long the down-slope travel distance, consisting of 35% pore space

lled with fluid. Initial debris material ( t = 0 , rectangle) consists of

5% solid and 35% fluid. Evolving bed elevations are in dashed-dot,

nd evolving debris depths are in solid lines. The novel enhanced

eal two-phase model appropriately captures the emergence and

ropagation of complex frontal surge dynamics associated with

he frontal (ambient) viscous-drag and erosion. The surge is am-

lified with erosion. Simulations dynamically update the flowing



12 S.P. Pudasaini and J.-T. Fischer / International Journal of Multiphase Flow 132 (2020) 103416 

Fig. 1. Time evolution of the flow depth (solid line) and erosion depth (dashed-dot line) as a two-phase debris mass moves down an inclined erodible slope. Panels represent: 

a © erosion with mass and momentum production, b © physically incomplete erosion disregarding momentum production, c © no erosion but momentum production (which is 

equivalent to an effectively reduced friction), and d © no erosion, respectively. Simulations reveal that momentum production results in higher flow mobility. Panels b © and 

c © do not include the complete mechanism associated with erosion, which is reflected by the unexpected flow behaviour. 
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e  
materials, their two-phase rheologies, and phase interactions by in-

corporating the bed material into the flow. 

In Fig. 1 it is revealed that in connection to the erosion, the

mass and momentum production or loss should essentially be in-

cluded in the simulation. The panels, respectively, represent: a ©
erosion with respective mass and momentum production, b © phys-
cally incomplete erosion process disregarding momentum produc-

ion, c © no mass but momentum production, which is equivalent

o effectively reduced friction without mass production, and d © no

rosion at all. Only panels a © and d © are based on physically mean-

ngful model equations, representing the erosional scenario, and no

rosion, respectively. These simulations reveal that momentum is
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ost in erosion, and when mass and momentum productions are

ppropriately incorporated into the flow dynamics, this ultimately

dds momentum, and thus, the momentum production results in

igher flow mobility as measured by the travel distance or the

rontal position. As discussed earlier, such a phenomenon has often

een observed in mass flows involving erosion (see, e.g., Iverson

t al., 2011 ; de Haas and van Woerkom, 2016 ). This clearly demon-

trates that any conservative model that neglects the momentum

hanges (production, or loss) due to erosion is physically incorrect,

nd mathematically inconsistent. 

All the simulation panels in Fig. 1 must be viewed with respect

o the aspects included in the model equations producing these

anels. Erosion phenomena requires the inclusion of mass and mo-

entum productions, the terms ( E s , E f ) in the mass balance Eq.

1) and the terms 

(
u b s E s , v b s E s ; u b 

f 
E f , v b f E f 

)
in the momentum bal-

nce Eq. (2) , respectively. Panel b ©, that only includes the erosion

nduced mass productions ( E s , E f ), but does not include the mo-

entum productions 

(
u b s E s , v b s E s ; u b 

f 
E f , v b f E f 

)
, is based on physi-

ally incorrect model equations, leading to a debris body that could

ot attain enough mobility although there was erosion. Moreover,

he frontal surge could not be developed due to the lack of inclu-

ion of momentum productions in the simulation. 

Furthermore, panel c © shows quite unexpected flow mobility

hat resulted due to the invalid utilization of the momentum pro-

uctions, but without the corresponding mass productions (result

hown only until t = 8 s, as for larger time it exits the compu-

ational domain). This led to unphysical excess mobility because

xtra forces 

(
u b s E s , v b s E s ; u b 

f 
E f , v b f E f 

)
ar e applied in the momentum

alances without incorporating the eroded masses (without includ-

ng the mass productions ( E s , E f )) in the mass balances (1) that

ould stabilize the momentum productions through the changes

f momenta in the inertial parts of the momentum balances (2) . 

In Section 4 , we have proved that appropriate incorporation

f the mass and momentum productions or losses in conser-

ative model formulation is essential for the physically correct

nd mathematically consistent description of erosion-entrainment-

eposition processes. This means that considering only mass or

omentum production is not justified. Including only mass pro-

uction but not the momentum production that acts against the

rosion induced higher mass flow mobility, leads to unexpected

ow depths in the front (panel b ©). Similarly, considering only mo-

entum production without mass production, which corresponds

o the mechanically reduced friction but without erosion that

ould have been needed for the reduced friction, results in an un-

xpected rapid flow behaviour (panel c ©). The use of unphysical

odel equations therefore can be easily identified from the un-

xpectedly low and unexpectedly high mobility, and unusual flow

ehaviour. 

. Discussion 

Although the same set of Eqs. (1) - (6) can be applied for the

hannelized and unconfined flows, the time and space distribu-

ions of flow depth and velocity or the momentum, and lateral

preading can be completely different in channelized and uncon-

ned free-surface mass flows. This is even so for flows involving

rosion. To investigate these aspects, Cascini et al. (2016) presented

odelling of channelized experimental flows, while Cuomo et al.

2014) simulated the spreading of debris avalanches involving ero-

ion. Similarly, Cuomo et al. (2016) showed that the lateral spread-

ng of the debris avalanche can be highly affected by the entrain-

ent of the bed. 

Bed entrainment plays a major role in determining the whole

ropagation pattern. However, there can be different aspects of
rosion in nature. There are contrasting arguments, explanations

nd observations. Considering two Italian 1998 Sarno-Quindici

vents, Cascini et al. (2014) mention that increasing entrainment

ate inside the channel may diminish the final runout of channel-

zed landslides of the flow type. With reference to the 2005 Nocera

nferiore debris avalanche and the 1999 Cervinara debris avalanche,

uomo et al. (2014) indicated that bed entrainment can be a dis-

ipative mechanism to reduce mobility of unchannelized flow-like

andslides. Furthermore, Cuomo et al. (2016) investigated the role

f bed entrainment for the field-observed scenario of several chan-

elized and unchannelized flows interacting during the propaga-

ion, and concluded that bed entrainment in the central-lower part

f the propagation path could have been reduced the runout. Per-

aps, one could explain these findings as follows: Because of the

ddition of material from the ground surface to the moving mass,

he reduction in kinetic energy of the system might be greater than

he increase in its potential energy. This can probably be the situ-

tion for flows in moderate to low slope angles. Nevertheless, the

rosion related mobility can be site and material specific. However,

hose complex behaviors also depend on which erosion mecha-

ism takes place, which flow rheologies are involved, and how the

ass and momentum productions are considered in the dynamical

odel equations. This requires further research. 

The importance of the mechanical erosion model for two-phase

ass flows consisting of viscous fluid and solid particles presented

n this paper has been increasingly realized in the recent simula-

ions of mixture mass flows including laboratory experiments and

he real events. The relevant literature ( Wang et al., 2017 ; Yang

t al., 2018 ; Qiao et al., 2019 ; Li et al., 2019 ; Liu et al., 2019 ;

udasaini and Mergili, 2019 ; Shen et al., 2019 ; Liu and He, 2020 ;

ergili et al., 2020a,b ; Nikooei and Manzari, 2020 ) have clearly

ndicated how the mechanical erosion model could appropriately

imulate the actual flow dynamics, surge development, run-out,

nd deposition morphology based on the mechanical erosion rates

or solid and fluid and the erosion induced momentum produc-

ions. Therefore, as a first step, here, we have provided a mechan-

cally appropriate description of the erosion rates for two-phase

ass flows, presenting simulations with plausible parameter set-

ing for erosion induced enhanced mobility. The application of the

ovel erosion rate model to experimental and complex natural

vents of debris and avalanche mixtures would require substan-

ial additional work, and corresponding parameter estimates, ei-

her derived from field measurements or back calculations, involv-

ng observation data, which, therefore, has to be deferred to some

uture contributions. 

. Summary 

Two different erosion models are present in the literature - em-

irical and mechanical ones. However, both of them are (mostly)

ffectively single-phase. The mechanical erosion models involve

he dynamical variables associated with the flow coupled to sev-

ral physical parameters. Nevertheless, the existing mechanical

rosion models contain singularities, or result in unphysical be-

avior, for very low or high velocities. Here, we developed a two-

hase, process-based, non-singular mechanical model for erosion

ates for both the solid and fluid phases. The model is based on

he jump in the momentum flux and enhances an existing gen-

ral two-phase mass flow model ( Pudasaini, 2012 ). The jump in-

ludes the contrasts in shear stresses and momentum fluxes across

he erodible substrate. At the interface, the solid stress satisfies the

oulomb law, and the fluid stress follows the Chezy-type friction.

he solid and fluid velocities on either sides of the singular surface

re expressed in terms of the mean flow velocities. This introduces

rosion drift coefficients. The net interfacial (solid) velocity is mod-

lled by the shear velocity which introduces a further coefficient
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that transforms the shear stress to velocity. The singularities in the

existing erosion rates have been systematically removed by devel-

oping mechanical closure models for the coefficients emerging in

the erosion rates constructed here. This is based on the fact that

effectively reduced frictional stress in erosion is equivalent to the

momentum production. 

In contrast to existing models, the erosion drift equation clearly

demonstrates that erosion cannot take place by setting the zero

velocity of the eroded particle (or, molecule). We proved that if

the basal erosion drift coefficient approaches unity, then the ero-

sion rate increases rapidly as it happens for very light (mechani-

cally weaker) basal surface material. We further revealed the fact

that when the basal substrate is weaker (or, stronger, in terms of

density and volume fraction, or mass fraction component) as com-

pared to the debris flow, then the eroded particle moves with rel-

atively faster velocity (or, vice versa). These are natural conditions.

For no density and volume fraction contrasts across the interface,

results show that the particle at the bottom of the flow moves

twice as fast as the velocity of the eroded particle on the other

side of the interface (basal surface). In the most simple situation,

for the plug flow, the basal drift coefficient becomes 1/2, a typical

scale characterizing the erosion speed. This provided a first-ever

mechanics-based fundamental parameter for engineering applica-

tions with regard to the velocity of the eroded or entrained mate-

rial. Similarly, in this simple situation, the shear velocity factor is

inversely proportional to the difference in the friction coefficients,

difference in the buoyancy factors, and the solid volume fraction

contrasts on either side of the erosion interface. Thus, the erosion

process ceases as these differences tend to vanish. Such a com-

prehensive understanding regarding erosion phenomena associated

with mixture mass flow is novel. 

The proposed erosion rate models explicitly show, that for ero-

sion to take place, at least one of the four parameters or, the

dynamical variables, must have a jump across the interface: the

buoyancies, the densities, friction coefficients and the volume frac-

tions. Most existing erosion models are based on single-phase con-

sideration. However, it is crucial to consider two-phase flows and

two-phase erosion models. Because, considering the erosion rates

or especially the reduced erosion rates, it appears that one of the

main dynamic variables driving the two-phase erosion mechanism

is the dynamically evolving solid (or, fluid) concentration. This

characterizes the two-phase nature of the flow and erosion. The

model presented here can also be applied to single phase flows

in which friction (and/or density) jump across the interface is ap-

parent. It appears that even for basal material with higher friction

than that for the moving mass, erosion may take place. Such ba-

sic understanding has great implications in correctly understand-

ing the nature of erosion mechanism. Apparently, for solid (or, the

solid-type bulk), erosion is not necessarily and directly dependent

on the velocity but depends on the competition between the me-

chanical strength of the flowing debris and the bed material. How-

ever, for the fluid, the erosion rate is linearly proportional to the

fluid flow velocity. We also explained how the present method can

be applied to further develop other erosion rate models, includ-

ing the bulk-type mixture models. We showed that mechanically,

deposition is the reverse process of erosion. We explained the sit-

uations on how the deposition can be triggered and how it is am-

plified with the applied forces, and how the evolving enhanced net

basal shear stress overtakes the flow shear stress. 

We proved that the erosion resulting in higher geophysical

mass flow mobility can be described mechanically, and quantita-

tively when the mass and momentum productions are consistently

and physically correctly included into the mass and momentum

equations. We consider that erosion takes place only when the

basal substrate is mechanically weaker than the flow itself. So, due

to the weaker bed, as the effective resistance is reduced erosion
akes place. The effectively reduced frictional stress, which is a

ositive quantity, is balanced by the system in terms of the mo-

entum production. Furthermore, as the mass is added into the

ystem, the gravity load immediately accelerates the total mass

own the entire travel distance. This further enhances the flow

obility, because the erosion-induced added mass implies added

otential energy. Altogether, this explains the higher mobility as-

ociated with the erosion in mass flow. With this, we solved the

ong standing dilemma of erosion related mobility of geophysical

ass flows. 

The model reveals some major aspects of the mechanics asso-

iated with erosion, entrainment and deposition. Simulations in-

icate that the model appropriately captures the emergence and

ropagation of complex flow dynamics associated with erosion, in-

luding the sharp frontal surge, and long tail with evolving basal

urface. 
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