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A general analytical model for superelevation
in landslide

Abstract Superelevation is an often observed phenomenon in
landslide and debris flow down a complex three-dimensional
topography. The degree of superelevation is controlled by the
geometry of the channel, the material involved and also the flow
dynamics. Empirical methods are usually applied to estimate su-
perelevation. However, those models are incomplete and lack
important aspects of the channel geometry, material properties
and flow dynamics, instigating serious errors in estimating flow
velocities that could only be controlled empirically by introducing
ad hoc correction factors. Here, we present new and complete
analytical models for superelevation and superelevation velocities
down a general topography providing a fully dynamical method.
New models formally include essential forces that play an impor-
tant role in the flow dynamics, namely gravitational forces,
topographic- and hydraulic-pressure gradients and Coulomb fric-
tion. We discuss the importance of geometry in inducing superel-
evation and that one directional channel without twist cannot
produce superelevation. With the new models we can, in principle,
exactly obtain the flow velocities of deformable landslide, dynamic
impact pressures and the explicit description of deposition. We
have formally provided two alternative analytical representations
for superelevation: geometrical and dynamical definitions of su-
perelevation, which is a new concept. We proved that for superel-
evation to take place, the transversal velocity must have a gradient
across the channel. We have analytically constructed a new non-
dimensional superelevation number. Superelevation velocity ap-
pears to be a non-linear function of the superelevation number.
We can now explicitly quantify the superelevation intensity in
landslide motion. It has several implications. We proved that
superelevation is higher for fluid-saturated debris flows than for
dry granular flows. New superelevation models have been validat-
ed against a laboratory granular flow down a multi-dimensionally
curved channel, and a natural debris flow event in Chamoson,
Valais, Switzerland. Our theoretical superelevation velocities ap-
pear to be very close to the velocity measured in laboratory and in
the field, which however, are largely overestimated by the empir-
ical models. We further validated the model by constructing an
exact analytical solution and by applying it to describe
superelevation-induced propagation and deposition of the natural
debris flow event. New simulations produced observed propagat-
ing fronts.

Keywords Analytical model . Landslide . Debris
flow . Superelevation

Introduction
Knowledge of the processes associated with the potential natural
hazards and their spatial and temporal extent are required for risk
management (Leroi et al. 2005; Fell et al. 2008). The dynamical
variables, such as the flow velocity and flow height of a landslide or
a debris flow, play a crucial role in hazard mitigation and risk

management (Guzzetti 2000; Dai et al. 2002). Usually, post-event
field investigations provide estimates of some of the debris flow
characteristics such as superelevation. For example, if no extended
measurements are available, at least the flow marks on banks after
a debris flow event allow for the estimation of flow height and flow
velocity (Johnson and Rodine 1984; Prochaska et al. 2008; Scheidl
et al. 2014). Due to its dynamic characteristics, flow velocity is
perhaps the most important variable for designing mitigation
structures (Faug 2015; Kattel et al. 2018), and also for simulating
the runout of the flow (Hungr and McDougall 2009; Mergili et al.
2017, 2018). Several empirical (Costa 1984; Rickenmann 1999; Jakob
2005), or physics-based (O’Brien et al. 1993; Medina et al. 2008;
Hungr and McDougall 2009; Pastor et al. 2009; Christen et al. 2010;
Pudasaini 2012; Bregoli et al. 2018; Pudasaini and Mergili 2019),
approaches exist for the estimation or computation of debris flow
velocities.

Usually, the centrifugal force associated with the channel ge-
ometry and the flow dynamics in curved channels results in higher
flow height along the outer flank of the channel compared with the
flow height along the inner flank. Similarly, field investigations
revealed higher, larger and broader lateral deposits on outer sides
of channel bends than on inner sides. The difference between these
two flow heights is defined as the superelevation (Johnson and
Rodine 1984). Information based on superelevation, typically from
deposit, is often applied to back-calculate the velocity of a debris
flow event (Mizuyama and Uehara 1981; Bertolo and Wieczorek
2005; Scheidl et al. 2014). Thus, the superelevation-induced tilt can
be applied for estimation of design flow rates (Johnson and Rodine
1984), which is needed for the construction of engineering struc-
tures in mitigating debris flow hazards.

Most of the superelevation models are based on two funda-
mentally different principles: free vortex and forced vortex. In the
free vortex flow assumption, velocity is inversely proportional to
the radius of curvature. The fluid mass rotates due to conservation
of angular momentum, and Bernoulli’s equation can be applied. In
contrast, in the forced vortex flow principle, all fluid particles
rotate at the constant angular velocity as if it was a solid body,
and thus the tangential velocity is directly proportional to the
radius of curvature. It produces a parabolic surface profile, and
the total energy per unit weight increases with an increase in
radius. Superelevation in mass flows, such as avalanches, land-
slides and debris flows, are classically exclusively modelled with
forced vortex methods (Woodward 1920; Schoklitsch 1937;
Woodward and Posey 1941; Chow 1959; Apmann 1973; Johnson
and Rodine 1984; McClung 2001; Scheidl et al. 2014). However,
superelevation in water flows in bends is largely described with
models based on free vortex (Thomson 1876; Cunningham 1937;
Chow 1959). Due to the prevailing dynamics of dominating to
substantial presence of solid-type materials, and also as suggested
by the first principles, our present method further supports and
generalizes the line of forced vortex. This also covers
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superelevation that has probably been largely used in road and
railway transportations (Torbic et al. 2014).

Utilizing the tilting surface due to superelevation as the flow
passes a given point of the channel, Johnson and Rodine (1984)
derived a simple model equation to estimate the mean velocity of
the debris flow. To do so, several assumptions were made: (i) A
two-dimensional (planar) setting is considered. (ii) As a result of
the radial acceleration of the debris, the surface of the flow tilts
toward the centre of curvature of the bend at some angle. (iii) The
free surface of the debris flow in the cross-section is perpendicular
to the direction of radial acceleration of the debris motion. (iv)
The debris material is assumed to be an ideal fluid, so no friction
and yield strength are considered. Then, by relating the tilt of the
flow surface (or, the deposit) to the planar radius of curvature of
the channel bend, a mean velocity could be estimated. Measuring
the radius of curvature and the tilt at suitably chosen multiple
bends (at least two), a mean velocity of the flow can be approxi-
mated. However, these implicit assumptions (i–iv) underline the
possible limitations of the derived models.

The vortex or forced vortex method (Apmann 1973; McClung
2001) is the most often used empirical method to estimate super-
elevation. Based on the laboratory debris flow experiments down a
twisted channel, Scheidl et al. (2014) studied the influence of
material properties and channel radius on the applicability of the
forced vortex equation. As in Johnson and Rodine (1984), this
approach is also based on several assumptions: the channel of
constant radius and rectangular geometry, essentially one-
dimensional flow, uniform velocity across the channel, the radius
of curvature should exceed the channel width, and the balance
between the hydrostatic force and centrifugal force. This probably
demanded for the introduction of ad hoc correction factors in
those models that may be deemed to have included those aspects
of the complex channel topography, and the flow dynamics, which
was not possible to formally contain in the empirical models
(Scheidl et al. 2014). Scale effect is always a legitimate concern in
laboratory experiments compared with the field events (de Haas
et al. 2015). However, here, we do not focus on such effects.

Johnson and Rodine (1984) indicated that the empirical models
may introduce serious errors in estimating dynamical quantities
such as flow velocity. This is so because the derived solutions are
not exact, and thus the degree of approximation of the analysis
cannot be determined. Furthermore, these models cannot be ap-
plied to real three-dimensional channels with strong curvatures
and twists as common features of the natural slopes and gullies.
This may result in an unusually high velocity for debris flows, and
providing a very unrealistic rate of flow at the time when the pulse
of debris propagates through the channel (Johnson and Rodine
1984). Such high velocities could only be controlled empirically by
introducing some correction factors (Apmann 1973; McClung 2001;
Scheidl et al. 2014). Such limitations have not been removed by any
existing models. Virtually, there is no further advancement than
these basic concepts in modelling complex superelevation in ava-
lanches and debris flows. However, a full analytical model that
includes essential physics and geometry of the mass flow incorpo-
rating the important process of superelevation is still lacking. Only
such a model could provide the physical basis for real application.
We address this issue here by presenting a new and more complete
analytical model for superelevation down a general channel. The
advantage of the new model is that no such assumptions as in

empirical methods are needed, and all the essential forces are
formally included through associated momentum balances in the
flow directions. For example, the channel geometry can be general
with variations in both the downslope and cross-slope directions
with curvature and twist. Our approach is fully based on the
mechanics and dynamics of the flow down a general topography.
The model has been validated against a laboratory granular ava-
lanche (of quartz sand) and a natural debris flow event. For the
terminology of avalanche and landslide, we refer to Stethem (2013)
and Hungr et al. (2014).

Superelevation in laboratory and field

A laboratory experiment of superelevation
Superelevations are observed in curved channels (Thomson 1876;
Cunningham 1937; Johnson and Rodine 1984; Pudasaini et al. 2008;
Scheidl et al. 2014). Subcritical flows show only slight supereleva-
tions whereas supercritical flows can produce strong supereleva-
tions (Chow 1959). Superelevation associated with the mass flow is
induced jointly by the topographic curvature and torsion, and the
flow velocity, or the centrifugal force of the flow. This has been
demonstrated in Fig. 1 by a laboratory experiment. Perhaps the
term overbanking is more suitable than superelevation, because
the phenomenon is related to the description of overbanking along
the outer curve.

A natural example of superelevation
Figure 2 shows an example of superelevation during a torrential
mudflow. A huge torrential debris flow swept over Chamoson
(VS), Switzerland, causing a lot of material damage and evacua-
tion.1 The material comes mostly from the erosion of schists of
Middle Jurassic ages of the Morcles nappes, which was affected by
low metamorphism (Badoux 1971). The matrix is made of silty
sands and debris, and of massive pieces of schist. The impressive
image of the torrential wave suggests that probably a storm has
triggered a huge flow that was fluidized as it entered and impacted
the town. The river was elevated (overflowed) out of the bed and
the torrential mud reached the village of Grugnay in the town of
Chamoson. The mud spilled over the bridge. We can see several
interesting, and mechanically and dynamically important aspects
in this event. The first bend in the upper right clearly shows the
superelevation. The associated centrifugal force throws most of the
debris material along the outer bend on the side of the
superelevated mass that moved a bit farther and eventually
stopped as a huge elongated levee. This also reveals the strength
of the centrifugal force. The little material deposited on the other
side was mainly due to the impact of the debris at the bridge across
the channel. Otherwise, all the overbanking debris material lies on
the right and is due to the superelevation. The toe (on the lower
right in the direction of the flow) of the debris deposit indicates
substantial plastic yield strength. Even in this situation, the power
of superelevation is tremendous.

Model development
For the equations considered and developed here, (x, y) forms a
curved reference surface, where x is the coordinate along the

1 https://www.lematin.ch/suisse/suisse-romande/lave-torrentielle-
devale-chamoson/story/16161089
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downslope direction (talweg or guiding curve) of a mountain
valley, while y is the arc length in a cross-sectional plane perpen-
dicular to the talweg, and z is the coordinate perpendicular to the
reference topography (Fig. 3). This defines an orthogonal curvilin-
ear coordinate system. The model equations are derived in this
general coordinate system. The theory presented by Pudasaini and
Hutter (2003), and its extension by Pudasaini et al. (2005) that will
be utilized here, is designed to model the flow of debris over
channels that explicitly includes the general curvature and torsion
effects to the flow dynamics in a systematic manner.

As listed in “Notations,” first, we define the variables and
parameters involved in the model. Let h be the flow depth distri-
bution; u, v be the slope parallel velocity distributions along the
downslope and cross-slope directions; and gx , gy, gz be the gravity
components along the slope, cross-slope and slope normal direc-
tions, respectively. Note that in the present consideration, gx, gy, gz
are complex functions of the topography that intrinsically include
curvature and torsion (Pudasaini and Hutter 2003). Similarly, b =
b(x, y) is the elevation of the basal topography that includes the
effects due to channel geometry. The curvature and torsion or
twist (e.g. of the guiding curve, or the talweg), κ = κ(x) and
τ = τ(x) can be computed from digital elevation data as functions

of the arc length of the guiding curve. In what follows, κ and η are
the local curvature of the talweg and the accumulation of the
torsion of the talweg from an initial position; η = cos (θ + φ(x) +
φ0), where θ is the azimuthal angle (in the cross-slope direction);

φ0 is a reference value; and φ xð Þ ¼ −∫xx0τ sð Þds is the accumulation
of the torsion τ along the channel, where s is the length along the
channel. Note that torsion exists only in three dimensions, where-
as curvature exists both in two and three dimensions. Here, we
consider a three-dimensional channel for which both the curva-
ture and twist can coexist. κ has the dimension of [1/m], whereas η,
in the present consideration, is a dimensionless number
(Pudasaini and Hutter 2003; Pudasaini et al. 2005). Furthermore,
Kx, Ky are the earth pressure coefficients in the x- and y-directions,
respectively, and δ is the basal friction angle, so μ = tan δ is the
friction coefficient. The results presented here are relevant for flow
of frictional materials down a general channel involving curvature
and twist (torsion) that induce superelevation. However, the un-
derlying models may be extended and applied to more viscous and
viscoplastic flows (see, “Scope of the model”). For simplicity, we
consider a non-inertial flow. Then, following Pudasaini et al.
(2005), the force balances along the x- and y-directions for an
avalanching mass take the form:

cba

Fig. 1 (a) A twisted channel used in experiments (Pudasaini et al. 2008): Upper part is straight and inclined at 45°; the middle part is twisted, and the lower part consists
of transition and runout zones merging into the horizontal plane. Both the upper and lower parts are cylindrical with radius of 9.7 cm. Total length of the channel =
600 cm, upper straight part = 85 cm, middle twisted part = 365 cm, lower transition part = 50 cm and horizontal flat part = 100 cm. (b) Granular avalanche (of quartz
sand) showing the front of superelevated mass induced by the curvature and torsion of the channel. (c) The main body of superelevated avalanche. The avalanching mass
is seen in a relatively grey colour around the main bending, whereas the channel is in light grey. The downward arrows in panels B and C indicate the avalanche positions

ba

Fig. 2 (a) The mudslide forced the Losentse to come out of bed on Tuesday, August 7, 2018, around 19:15 h CET in Chamoson, Valais, Switzerland. Viewing towards the
source. (b) The main bending of the channel after clearing the debris material days after the event
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where, ∣u ∣ = [u2 + v2]1/2 is the magnitude of the total velocity. The
first, second and third terms on the left-hand sides of (1) and (2)
are forces due to the gravity, Coulomb friction enhanced by extra
load induced by curvature and torsion, and the topographic pres-
sure gradients, respectively. The right-hand-side terms are the
hydraulic pressure gradients, in the associated flow directions.
The later includes lateral pressure enhanced by Kx and Ky. So,
the enhanced portion of the effective Coulomb friction force is
linearly proportional to κ and η emerging from the geometry of
the channel, and quadratically proportional to the velocity u
emerging from the flow dynamics, respectively. In (gz + κηu2),
κηu2 corresponds to the enhancement in the normal load gz due
to the curvature and twist of the topography. Equations (1) and (2)
can be rewritten as:

u
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2
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where Fx and Fy represent the net driving forces along x- and y-
directions, respectively, due to gravity, topographic pressure gra-
dients and the hydraulic pressure gradients. These equations will
be utilized to construct a novel superelevation model with super-
elevation velocities. As explained in “Introduction”, often in prac-
tice, the information on superelevated height is applied to obtain

the flow velocity. So, (1) and (2), or (3) and (4), implicitly assume
the flow height h.

Longitudinal velocity
By squaring (3) and (4), and summing them up, we obtain an
elegant expression:

μ2 gz þ κηu2
� �2 ¼ F2

x þ F2
y: ð5Þ

The advantage of (5) is that, except the second term on the left-
hand side, other terms are independent of u. So, (5) can be solved
for u:

u ¼ 1
μκη

F2
x þ F2

y

� �1=2
−μgz

� 	� �1=2
; ð6Þ

which is the general equation for the longitudinal velocity u with
superelevation that is discussed below.

Definition of superelevation

Geometrical definition of superelevation
Classically, superelevation is defined as the positive difference
of the elevated heights of the (flowing) mass between the outer
curvature (edge or flank) and inner curvature (edge or flank)
of the channel (Johnson and Rodine 1984; Allen 1985; de Blasio
2011). In simple words, this is the excess lateral inclination of
the flow surface (Pudasaini et al. 2005; Scheidl et al. 2014; von
Boetticher et al. 2017). Thus, superelevation, in general, is the
transversal gradient of the flow height, i.e. ∂h/∂y, where y
measures the transversal (arc) length defining the transversal
extent (domain) of the flow. We call this a geometrical defini-
tion, or measure, of the superelevation. However, laboratory
observation indicates that including other topographic and
dynamical effects, the degree or the intensity of superelevation
depends on the length of the channel (Pudasaini et al. 2005,
2008).

cba

Fig. 3 (a) Representation of a curved and twisted channel, where x,y,z are the coordinate lines constructed with respect to the master (reference) curve C. The dark line
along the channel is the talweg (axis) of the channel. (b) The cross-sectional profile of the landslide with the tangent vectors T,N,B along the coordinate lines, θ is the
azimuthal angle and ζ is the slope along the downhill. (c) The profile of the landslide along the downhill (Pudasaini et al. 2005)
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With the definition of Fy from (4), Eq. (6) can be rewritten in
terms of ∂h/∂y as:

∂h
∂y

¼ 1
gzKy

gy−gz
∂b
∂y

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μκηu2 þ μgz
� �2−F2x

q� �
: ð7Þ

As we will see later, (7) provides a general and more complete
measure, than those existing, of superelevation. So, (7) is the
geometrical representation of superelevation.

Dynamical definition of superelevation
However, as superelevation is the measure of the elevated
flow height on one side of the channel compared with the
same on the other side, this in fact is induced by the
asymmetry of the transversal velocity v. The longitudinal
velocity u could be similar across a transversal section,
but, for the superelevation to take place, the transversal
velocity must have a gradient across the channel. This gra-
dient is mainly induced by the geometry of the channel
(thus, gravity and topographic pressure gradients) and the
dynamics (hydraulic pressure gradients and the centrifugal
force) of the flow itself. In other words, if superelevation
takes place, the cross-sectional variation of the transversal
velocity provides a measure of superelevation. We call this
the dynamical definition, or measure, of superelevation and
is formally defined below by (11).

Transversal velocity
With the definition of ∣u ∣ = [u2 + v2]1/2, from (4), we have:

v

u2 þ v2½ �1=2
¼ Fy

μ gz þ κηu2
� �: ð8Þ

With known u from (6), the transversal velocity v can be
extracted from (8). This will be discussed in more detail later.

Superelevation velocity
We call v in (8) the superelevation velocity as this measures
the superelevation on one side of the channel slope (the out-
side bank) compared with the other side. The intensity of
superelevation is dynamically determined by the ratio v/
(u2 + v2)1/2, or mechanically by the ratio between the net ap-
plied (driving) force and the resisting force, Fy/μ(gz + κηu2).
This clearly shows that for the flow moving along the talweg
(i.e. v = 0, for transversally non-deformable material), there is
no superelevation. The degree of superelevation is determined
by the magnitude of v against the magnitude of the total flow
velocity (u2 + v2)1/2. Note that, even for the downslope motion,
v is positive on one side of the mountain flank, while it may
become negative on the other side. If vo and vi denote the
velocities on the outer and the inner flanks of the channel,
then, for the superelevation to take place, ∣vo ∣ > ∣ vi∣ so that
the mass elevates higher on the outer flank than on the inner
flank.

Superelevation number
We consider (8) and write:

v

u2 þ v2½ �1=2
¼ Fy

μ gz þ κηu2
� �≕SN : ð9Þ

We call SN the superelevation number. Such number does not
exist in literature. In gently curved torrent slope and bend, in (4),
(gy − gz∂b/∂y) can be negligible and variations of gz and Ky with y
can be ignored. Then, with the definition of Fy from (4), (9) can be
simplified to yield:

SN ¼ −gzKy ∂h=∂yð Þ
μ gz þ κηu2
� � : ð10Þ

This is the ratio between the (lateral hydraulic) pressure force
and the (Coulomb) friction force. SN is high for pressure-
dominated flows, but it is low for friction-dominated flows. So, it
has important implications. For fluid-saturated debris flows, for
which the effective friction is low, SN attains high values, resulting
in higher superelevation than for dry granular flows. While for
friction-dominated flows, i.e. relatively low fluid fraction or dry
granular flows, SN attains low values, resulting in lower superel-
evation. Such behaviors are also simulated in Pudasaini et al.
(2005) and Pudasaini and Miller (2013).

We note that Shukry (1950) defined (v2/(u2 + v2)1/2) × 100 as
strength of a spiral flow (Chow 1959) for water flowing in a curved
horizontal channel. However, this definition is ad hoc, whereas we
have derived the superelevation number in (9) based on the
physical principles, covering both the frictional and viscous or
ideal fluids, which can be applied to flows down general channels,
and two equivalent dynamical and mechanical expressions for
superelevation are presented.

Equation (9) shows that the superelevation number is the ratio
between transversal velocity (the superelevation velocity) v and
the total flow velocity (u2 + v2)1/2, or, equivalently, the ratio of net
driving force (that includes gravity, topographic pressure gradient
and hydraulic pressure gradient) and the resisting force (the Cou-
lomb force). So, from dynamical and mechanical points of view,
SN is an important non-dimensional number.

Equation (9) leads to the following analytical solution for v:

v ¼ � uSN

1−S2
N

� �1=2 � ð11Þ

Equation (11) shows that the ratio between the transversal and
longitudinal velocities can be rewritten as a function of the super-
elevation number SN :

v
u
¼ �I SNð Þ; ð12Þ

where, I SNð Þ ¼ SN= 1−S2
N

� �1=2
is the superelevation intensity. So,

ultimately, the superelevation velocity is a function of the super-
elevation number SN. Furthermore, for v to be real, 1−S2

N must be

Landslides



positive. This means, μ2 gz þ κηu2
� �2

> F2y. This is realistic be-
cause, in rapid channel flows, usually u is large, and in total, the
magnitude of Fy is relatively small. In the limit as v→ 0, SN→0; and
as u→ 0, SN→1, or when lateral forces are negligible, SN→0, and
when Fy balances Coulomb friction force, then SN→1. So, the super-
elevation number SN lies in the domain (0, 1). In the limit, when the
total transversal driving force is significantly higher than the friction
force, then SN→1, and superelevation is very effective. In this situa-
tion, the superelevation intensity can be substantially high to very
high. But, when the total lateral driving force is significantly lower
than the friction force, then SN→0, and the superelevation is negligi-
ble. For this, the superelevation intensity can be disregarded. Alterna-
tively, for mainly downhill motion, as SN→0, I SNð Þ→0. However,
for the high-intensity superelevation, or the lateral expansion fan in
the transition and deposition regions, I SNð Þbecomes very large be-
cause SN→1. For given material parameters, basal topography and
flow height, (6) and (12) constitute the full analytical model for
velocities with superelevation.

Figure 4 shows the superelevation intensity (v/u or, I SNð Þ) as a
function of superelevation number. With this, we have now the
possibility to explicitly quantify the superelevation in landslide mo-
tion. The superelevation intensity as shown in Fig. 4 is within the
range of observed data in the laboratory and in the field (Scheidl
et al. 2014). This justifies the usefulness of the new superelevation
model. Furthermore, we mention that superelevation may not arise
at all even in a curved channel (Chow 1959).We have proven this, and
this has been demonstrated in Fig. 4 by showing that this happens if
the superelevation intensity approaches zero. This is so because the
force that tends to produce the superelevation (e.g. the centrifugal
force) can be balanced by the complex forces, for example due to the
lateral gravity force and the lateral topographic pressure gradients
that are included in Fy.

It is interesting to observe that from (3) and (4), we can directly
obtain:

v
u
¼ Fy

Fx
� ð13Þ

However, in contrast to (12), (13) does not directly involve
the normal load, or the frictional contribution μ(gz + κηu2). The
advantage is that it is valid for any ratio of Fy and Fx. However,
as discussed earlier, the friction force leads to a constraint on
SN such that SN must lie in the domain (0, 1), usually as Fy < Fx,
v < u. Nevertheless, in the transition and deposition regions, or
in regions of substantially large superelevation, Fy > Fx, and
thus v > u. This also applies to strongly curved channels for
which u drops rapidly to zero, but at the same time, due to the
lateral spreading, v is relatively much higher than u. In situa-
tions when v≫ u, superelevation is amplified and thus, SN→1.
Furthermore, (13) indicates that the superelevation, or the
transversal velocity, is directly proportional to Fy and the lon-
gitudinal velocity u. Fy is positive on the one side of the chan-
nel, and negative on the other side; they, in general, have
different magnitudes and higher positive value than the nega-
tive value. This difference is caused by the different effective
gravity, normal load and hydraulic pressure gradients (Apmann
1973; Johnson and Rodine 1984; McClung 2001; Pudasaini et al.
2005; Pudasaini et al. 2008). Thus, whether or not the superel-
evation takes place will be determined by the difference in the
magnitude of Fy on either side (flank) of the channel.

Alternative geometrical definition of superelevation
Here, we provide an alternative geometrical definition of su-
perelevation. Applying the definition of Fy, we can solve (8) for
∂h/∂y to yield:

∂h
∂y

¼ 1
gzKy

gy−gz
∂b
∂y

−μ gz þ κηu2
� � v

u2 þ v2ð Þ1=2
" #

: ð14Þ

Instead of Fx in (7), (14) includes more dynamical aspect as
represented by the factor v/(u2 + v2)1/2. In a gently curved
channel, (14) may reduce to:
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Fig. 4 Superelevation intensity as a function of the superelevation number
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∂h
∂y

¼ −
μ

gzKy
gz þ κηu2
� � v

u2 þ v2ð Þ1=2
: ð15Þ

This proves that the superelevation is proportional to the
lateral flow velocity, and the magnitude is amplified by the
ratio between the lateral velocity and the total velocity.

With (15), we further consider different scenarios. Usually,
during the rapid down slope motion, u > v, then:

∂h
∂y

¼ −
μ

gzKy
gz þ κηu2
� � v

u
: ð16Þ

In the depositional region, slowly, v may overtake u, so:

∂h
∂y

¼ −
μ

gzKy
gz þ κηu2
� �

: ð17Þ

Before this, momentarily, both velocity components may be
comparable, then:

∂h
∂y

¼ −
μ

gzKy
gz þ κηu2
� � 1ffiffiffi

2
p : ð18Þ

However, if the lateral velocity is negligible, for example for
laterally negligible or no deformation, (15) leads to:

∂h
∂y

¼ 0: ð19Þ

So, for different flow dynamical situations, we can explicitly
quantify the associated superelevations. This importantly contrib-
utes in design of channels and banks in bendings. Further, a
crucial fact (19) formally proves is that, for superelevation to exist,
the lateral velocity must be non-zero. Such a formal proof is novel.
We also mention that even the most simplified form (17) repre-
sents more information on superelevation than the classical su-
perelevation models (Woodward 1920; Schoklitsch 1937;
Woodward and Posey 1941; Chow 1959; Apmann 1973; Johnson
and Rodine 1984; McClung 2001; Scheidl et al. 2014). This will be
further elaborated later.

Scope of the model
Although the model equations developed above are primarily
based on the frictional rheology, it can be extended and
applied to more viscous-type flows, or the flows with higher
water contents and pore water pressures. This can be achieved
by extending the friction coefficient μ to the effective friction
coefficient μe = (1 − λ)μ, where λ is the pore pressure ratio
(Iverson and Denlinger 2001). The factor (1 − λ) will also
affect gravity components, and hydraulic and basal pressure
gradients. This has been explained in Pudasaini et al. (2005).
With this enhancement, the new model can then be applied to
highly fluidized mass flows, also for volcanic and submarine
events (Pudasaini and Miller 2013). Moreover, cohesion can be
included in Coulomb friction term that extends μgz, and also
the earth pressure coefficients Kx, Ky. Furthermore, the model

can also be extended to real two- or multi-phase mixture
flows (Pudasaini 2012; Pudasaini and Mergili 2019).

The torrential debris and mud flows are often viscous
flows. As in Pudasaini et al. (2005), Pudasaini (2012) and
Pudasaini and Mergili (2019), viscous effects could also be
added explicitly on the right-hand sides of (1) and (2). How-
ever, this adds complexity that may hinder the direct and
explicit solution of the velocity fields from these equations.
Yet, the viscoplastic rheology can be modelled either by using
a complex effective Coulomb-type mixture friction coefficient
that includes both the viscous and plastic properties of the
bulk (Pokhrel et al. 2018; Khattri and Pudasaini 2018, 2019), or
directly a viscoplastic approach might be adopted (Domnik
et al. 2013; von Boetticher et al. 2016). However, the latter
approach could be much more complex.

Discussions on important aspects of the new model
Here, we point out some important features of the new model
equations: (6) and (12).

Importance of different forces in superelevation and flow stopping
The new models (6) and (12) include different forces that play an
important role in the flow dynamics resulting in superelevation,
namely gravity, topographic pressure gradients and hydraulic
pressure gradients in both the downslope and cross-slope direc-
tions, and the Coulomb friction force. We focus on the downslope
flow velocity u given by (6), which is enhanced by the dynamic
forces Fx and Fy, and reduced by the frictional force −μgz. The
magnitude of u is controlled by the unified parameter Pu = μκη
that includes the basal friction coefficient μ, and the curvature κ
and twist η of the slope. Note that μ and η in this representation
are dimensionless parameters, and κ has the dimension of [1/m]
which is also the dimension of Pu. The parameter Pu can be
determined from the knowledge of the slope (e.g. through GIS)
and the flow material. This will be discussed later. Here, deposition
refers to the halting or stoppage of the mass flow, i.e. u→ 0. The
flow tends to stop (in the longitudinal direction) if one of the
following four conditions are met.

I. μ very large: This corresponds to the very large basal friction,
which effectively halts the flow of the material, a type of fully
sticky bottom, or full interlocking of the flow material with the
basal surface. However, note that μmight vary locally (Jop et al.
2006; Pudasaini and Hutter 2007; Mergili et al. 2018). So, higher
values of u are associated with lower values of μ.

II. κ very large: This means the radius of curvature (R = 1/κ) is
very small. Since the flowing mass experiences a very large
curvature as it enters the region of strongly curved topogra-
phy, the mass tends to stop or deposit. As normal load is
proportional to κ, a very large κ enhances the normal load in
the similar manner. The basal shear stress increases accord-
ingly, resulting in the halting of the flowing mass. This is
evident in Fig. 2.

III. η very large: As for κ, a strongly twisted channel tends to
force the flowing mass to stop. However, note that κ and η
are independent geometric parameters, both influencing the
flow dynamics (Pudasaini et al. 2005).
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IV. F2
x þ F2

y

� �1=2
−μgz≈0: This means that when the total net

driving force is balanced by the frictional force, the mass flow
stops, which means mass deposits.>

I–III are related to the material and topographical properties of
the slope, whereas IV is associated with the net force

F2
x þ F2

y

� �1=2 �
that enhances the motion and the resisting force

(−μgz) that opposes the motion. Whereas u is inversely propor-
tional to μ, κ and η, or the unified parameter Pu = μκη, u is directly

proportional to F2
x þ F2

y

� �1=2
−μgz. So, I–III and IV influence u

fundamentally differently.

An explicit description of deposition
Dynamically, a complete deposition of mass in both directions is
attained when both the longitudinal and transversal velocities
vanish, i.e. ∣u ∣ = 0 and ∣v ∣ = 0. First, we analyse u. As discussed

above, (6) tells us that u→ 0 if Pu→∞, or F2
x þ F2

y

� �1=2
−μgz→0.

This means that the total enhancing force F2
x þ F2

y

� �1=2
must be

balanced by friction −μgz. So, F2
x þ F2y

� �1=2
−μgz ≤0, i.e. friction

must overcome the driving force. Now, we analyse the transversal
velocity. Equation (12) says that v→ 0 if u→ 0 or, SN→0. How-

ever, u= 1−S2
N

� �1=2 ¼ u= 1−F2
y=μ

2 gz þ κηu2
� �2h i1=2

can be of the

order unity even if u→ 0. For example, assume u is very small,

then u2≪ u, so, u= 1−F2y=μ2g2z
� �1=2

→O 1ð Þ. Thus, effectively v→ 0

if SN→0, i.e. Fy/μ(gz + κηu2)→ 0, which means that either one of
μ, κ or η is very large, or Fy→ 0. Hence, the mass flow comes to a

halt if Pu→∞, or ( F2
x þ F2y

� �1=2
−μgz ≤0, and Fy→ 0).

If the lateral velocity v→ 0, then Fy→ 0. So, if the longitudinal
velocity vanishes (e.g. in the runout), then Fy = μgz, i.e. the lateral
forces are balanced by friction, also leading to the halting of the
flow in the lateral direction.

Alternatively, from the total velocity, u = (u, v), we obtain its
magnitude as:

juj ¼ 1
μκη

F2x þ F2
y

� �1=2
−μgz

� 	� �1=2 μ2 gz þ κηu2
� �2−F2

y

h i1=2
μ gz þ κηu2
� � :

ð20Þ

So, u→ 0 and μ2g2z−F
2
y→0 are conditions for the total stop of

the mass, i.e. ∣u ∣ → 0.

Longitudinal motion caused by lateral forces
A plausible and counterintuitive observation is the effect of the
transversal net driving force Fy and the twist η of the topography
on enhancing or reducing u. Usually, one would think that the
longitudinal velocity u can be obtained by considering the net
downslope force Fx, curvature κ and the resisting force −μgz.
However, we have formally proved that this is not true. In fact, u
also depends on the net transversal force Fy and the twist η. This
can also be explained physically. For example, consider a situation

when the mass enters the runout zone, which is flat along x, but
channel opens into a fan in the y, or transversal, direction. This is
often the situation in the fan region. Locally, we may assume that
the hydraulic pressure gradient in the x-direction is almost zero,
which is a reasonable approximation for a longitudinally long fan
with plateau-type deposition. Then, Fx is almost zero. However, (6)
shows that Fy can be substantially large that contributes positively
to u. The question may arise for why the lateral pressure may
cause or enhance longitudinal motion. This can be explained and
justified physically. For a deformable mass flow, the motion in one
direction is also influenced by the topographic changes and hy-
draulic pressure gradients in that and the other direction. Inter-
estingly, v explicitly depends only on Fy and u, but u depends on Fx
and Fy. So, ultimately, v also depends both (directly) on Fy, and
(indirectly) on Fx. For example, at a strongly curved channel such
as the right bend, u→ 0 but v can be very large.

Estimating velocities and pressures
Measuring, or inferring, the flow depth is relatively (much) easier
than the flow velocities. The model equations, (6) and (12), indi-
cate that with the knowledge of the topography, friction and the
flow depth, in principle, we can fully obtain the flow velocities in
both the longitudinal and transversal directions. From an applica-
tion point of view, even more important is the determination of
the (dynamic) impact pressures in flow directions, px = Cxρu

2, and
py = Cyρv

2, for some suitable coefficients Cx and Cy, typically 1/2,
where ρ is the material density, and u and v are given by (6) and
(12). The total or the resultant impact pressure can be obtained as
pt = Cxρu

2 + Cyρv
2, or pt = Ctρ(u

2 + v2) (for a suitable choice of Ct,
see, e.g. Kattel et al. (2018)). Such description of flow dynamics via
u, v, and the estimation of impact pressures, that include gravita-
tional forces, topographic pressure gradients, hydraulic pressure
gradients, friction coefficient, curvature and twist, is new.

Comparison with existing models
The analytical models presented in (6) and (12) are general. In
order to compare these models with the existing models, assume
uniform flow in x-direction (i.e. ∂h/∂x = 0) and the flow takes
place on the reference surface. Then, following the designated
coordinate lines, from (6) we obtain:

u ¼ 1
μκη

g2x þ gy−gzKy
∂h
∂y

 �2 �1=2

−μgz

( )" #1=2
: ð21Þ

Furthermore, if the gravity forces in x- and y-directions are
assumed negligible (e.g. as in transition and deposition zones in
runout fans), then Fx = 0. If one could think of neglecting the
lateral gravity component and the Coulomb friction, then, with
gz = g cos ζ, where ζ is the slope angle, and R = 1/κ is the radius of
curvature, (6) reduces to:

u ¼ R
1
μη

 �
gcos ζð Þ ∂

∂y
Kyh
� �� �1=2

: ð22Þ

Equation (22) can be written in discrete form. With the channel
width (or arc) B =Δy, associated with the superelevation
Δh ¼ Kypho−Kyahi, where ho and hi are the flow heights in the

outer and inner curvatures of the channel, and Kyp and Kya are
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associated with the outer and the inner parts of the flow assuming
that the flow is compressed and expanded in these local regions
(McClung 2001; Scheidl et al. 2014), (22) reduces to:

u ¼ R
1
μη

 �
gcos ζð Þ Δh

B

� �1=2
: ð23Þ

This corresponds to the superelevation model by Scheidl et al.
(2014). An equation similar to (23) has also been obtained by
Johnson and Rodine (1984). Nevertheless, in both Johnson and
Rodine (1984) and Scheidl et al. (2014), friction and twist do not
appear (i.e. equivalently μ = 1, and η = 1), and Δh/B = tangent of
the tilt of the free surface. However, their simplified approach does
not include any dynamics of superelevation, e.g. ∂(Kyh)/∂y, that
automatically appears in our model (6). Their approach only
accounts for the highest markings on the channel sides that might
have been produced by two different surges of substantially dif-
ferent dynamics. This can result in potentially large errors.

If, moreover, the hydraulic pressure gradient is assumed to be a
constant, ∂h/∂y = H, and Ky = 1, μ = 1, η = 1, then, per unit channel
width, (22) further reduces to:

u ¼ gcos ζHR½ �1=2; ð24Þ

Equation (24), in the form, is similar to the model presented by
De Blasio (2011), but here it is without the assumption of equality
of curvatures on either flanks of the slope.

However, from the physical point of view, the validity of (23)
and (24) that are obtained from (6) after imposing several simpli-
fying assumptions mentioned above can be questioned (Johnson
and Rodine 1984). In fact, (23) and (24) may not represent the true
physics of the velocity corresponding to the superelevation of mass
flow in a multi-dimensionally curved channel. This is clear from
the derivation of (6). All, or most of the assumptions made above
in obtaining the reduced forms (23) and (24), tend to distort the
physics of superelevation. For example, experiments show, for the
superelevation to take place, the channel must be curved in both x-
and y-directions, and that the curvature κ and twist η must be
present (Pudasaini et al. 2008; Scheidl et al. 2014). In fact, super-
elevation is the result of the twist of the topography that corre-
sponds to η ≠ 1 (Pudasaini and Hutter 2003; Pudasaini et al. 2005).
Furthermore, gravity and friction are other important aspects of
the mass flow that plays a crucial role in determining u. Thus, (23)
and (24) lack the physical ground to represent the velocity of a
mass flow associated with the superelevation, whereas (6) or (7)
provides the full and general analytical description of mass flow
down a general channel with superelevation.

The previous approaches of modelling superelevation are large-
ly based on ad hoc and empirical methods. Our analysis shows
that the previous models are imperfect and only consider very few
aspects of superelevation while we have presented a more general,
complete and mechanics-based approach for superelevation. In
our approach, no correction factor is needed to be introduced, in
contrast to those in the vortex-based models (Scheidl et al. 2014).
The ad hoc or empirically introduced correction factors which
reflect the uncertainties of those approaches (as high as a factor
of 10) likely stem from the fact that the previous approaches were
incomplete, and very weakly associated with the physics of the

process. Our model replaces the empirical factor by the mechan-
ically and automatically emerging factor 1/Pu = 1/μκη, and the
inclusion of gravity force gx and the friction force −μgz. Scheidl
et al. (2014) found that the channel slope as well as centreline
radius has a significant influence on the superelevation through
the correction factor used in the vortex equation. This indicates
that the three-dimensional topographic effects that are present in
our derivation of (6) cannot be neglected, which was ignored in
the derivation of the reduced models (23) and (24) to compare the
previous models (de Blasio 2011; Scheidl et al. 2014). The value of
the unified parameter Pu can be geometrically and mechanically
estimated, making our model physically based. This is explained in
“Importance of different forces in superelevation and flow
stopping”.

Importance of geometry in inducing superelevation
A crucial aspect in inducing superelevation is the direct influence
of the topography on the gravity force components gx, gy and gz by
the curvature, and mainly by the twist, of the basal surface. Su-
perelevation cannot be generated in a channel that is curved only
in one direction. Twist is the essential mechanism in generating
the superelevation (Pudasaini et al. 2005, 2008; Scheidl et al. 2014).
So, the reduced models in (23) and (24) (Apmann 1973; Johnson
and Rodine 1984; McClung 2001; de Blasio 2011; Scheidl et al. 2014)
cannot fully describe the superelevation because it only includes
curvature in the x-direction which can only reduce the speed of
mass flow in the x-direction depending on the curvature intensity.
Only the twist can elevate the flowing mass more on the outer than
the inner bank of the channel. So, in general, a one-directional
channel without twist cannot produce superelevation. Further-
more, the topographic pressure gradients play a crucial role in
inducing the superelevation (Pudasaini et al. 2005, 2008). Equa-
tions (23) and (24), which neglect ∂b/∂x and ∂b/∂y, and the twist,
cannot legitimately generate superelevation.

Superelevation in transportation lines
Probably, the design of railway lines and roads finds the most
prominent use of the concept of superelevation by design practi-
tioners (Torbic et al. 2014). This is so because as a vehicle moves
around a curve it experiences a centripetal acceleration and the
friction at the interface between the tire (wheel) and road is
counterbalanced by the superelevation.

Now we show how (21) can be utilized to better design the
superelevation in road, highway and railway lines. For simplicity
and compatibility to most road and rail lines, by assuming a gentle
downslope, (21) can be rewritten as:

gcos ζKy
∂h
∂y

¼ μ gcos ζ þ η
R
u2

� �
; ð25Þ

or,

∂h
∂y

¼ μη
Kycos ζ

 �
u2

gR
þ μ

Ky
: ð26Þ

In the form, (26) can be compared to the superelevation model
suggested by the National Cooperative Highway Research
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Program, Transportation Research Board, USA (Torbic et al. 2014).
In their notations:

e
100

¼ u2

gR
− f ; ð27Þ

where, e/100 corresponds to the superelevation (∂h/∂y) and f
corresponds to friction (μ) in (26). In mildly twisted pavements,
η can be set to unity, and for a point vehicle Ky is also unity.
However, there are still fundamental differences between these two
models.

(i) The sign of the second term on the right-hand sides of (26)
and (27) is of major concern, so is the first term. Our model
(26) is based on the principle of Coulomb friction that is very
well known to enhance the normal load g cos ζ by the centrif-
ugal force ηu2/R due to the presence of curvature (κ = 1/R) at
the bend (Savage and Hutter 1991; Tai et al. 2002; Pudasaini
and Hutter 2007; Fischer et al. 2012). So, the first term on the
right-hand side of (26), that is due to the centrifugal force, and
the second term therein, that is due to the normal load, must
have the same sign. In the model (27), the superelevation is
given just by the centrifugal force minus the friction. Howev-
er, in contrast to (27), in our model (26), the frictional part
appears with the same sign as the centrifugal force. This is due
to the fact that the Coulomb frictional force is proportional to
the total dynamical load (g cos ζ + ηu2/R) enhanced by the
centrifugal force, rather than just to the static load g cos ζ
without the centrifugal contribution.

(ii) The second important aspect is the factor μη/Ky cos ζ in (26)
that does not appear in (27). This means that our model
extends the superelevation of a point mass travelling on a
horizontal plain curve (Torbic et al. 2014) to deformable mass
down a more general channel (Pudasaini et al. 2005). This is
so, because in our model, variables, such as ∂h/∂y and u,
depend on the position at the channel. Normally, the factor
μη/Ky cos ζ is less than unity. This means the centrifugal force
is reduced by this factor in our model. However, this reduc-
tion is consistently covered by the term μ/Ky, as this is a
positive quantity. In general, quantitatively, (26) and (27)
can produce quite different results.

(iii) The negative sign in the second term on the right-hand side
of (27) is due to the choice of the direction of the friction
force along the lateral direction. However, by definition, the
frictional force must act against the direction of the driving
gravitational force direction. So, in the derivation of (26), the
direction of friction is considered along the component of
the lateral gravitational force.>

There are major differences in the two modelling approaches.
Our method is fully supported by the principle of the Coulomb
friction. And, our model covers much wider physics of mass flow,
even for a point mass travelling along horizontal bends. So, this
analysis demonstrates that we have presented a fundamentally
advanced and physically consistent model for superelevation.

Model applications
Pudasaini et al. (2005, 2008) presented detailed simulations show-
ing the effect of the torsion on the dynamics and depositions of
debris and avalanche flows, and the validation of the full model by
laboratory experiments. Here, we focus on the application of the
new superelevation models developed in this contribution. We
consider two situations: a laboratory granular flow (Fig. 1), and a
natural debris flow event (Fig. 2). However, the new model should
further be scrutinized by extensively testing it with different lab-
oratory experiments (e.g. including Scheidl et al. 2014) and the
field events (e.g. 2018 Chamoson event, VS, Switzerland).

Laboratory avalanche experiment
First, consider the granular flow experiments down a curved and
twisted channel (Pudasaini et al. 2008). We validate our superele-
vation velocity (21) along the downslope. As the front of avalanche
reaches the transition zone, the front velocity in the experiment in
Fig. 1 was about u = 2.25 ms−1. We note that due to the torsion, all
the x, y and z directional gravity components are evolving as a
function of the torsion. Since the torsion induces the twist in the
channel, the effective normal load increases substantially as the
flow moves downslope. Following the experimental setup and the
material parameters, we obtained estimations on the parameters
and dynamical variables. We compare the experimental velocity
and the velocity from the new model around the transition in the
lower portion of the channel. For detailed information, we refer to
Pudasaini et al. (2008). For the present consideration, at this
transition, due to channel curvature, the normal load gz is typically
enhanced by a factor of 1.3. This is reasonable and justified because
based on the complexity of the channel, gz is implicitly enhanced
by the curvature and twist of the channel (Pudasaini and Hutter
2003; Pudasaini et al. 2005). The bed friction coefficient was μ =
0.47(1 − γh), where, following Pudasaini and Hutter (2007), fric-
tion is assumed to decrease with the pressure (normal load) that is
modelled with the pressure parameter γ = 0.16 (also, see, Potyondy
1961), the channel slope was ζ = 45∘ and the mean slope in the
transversal direction, ζl ≈ 30∘. Other estimated quantities are η =
0.8, κ = 2.0, ∂h/∂y = 0.8. Furthermore, since the pressure is in the
passive state, and the flow is still rapid, it is legitimate to consider
Ky = 1.2 that includes a mild passive pressure coefficient
(Pudasaini and Hutter 2007). With this, from (21) we obtain u ≈
2.27 ms−1, which is very close to the velocity estimated from the
experiment, u = 2.25 ms−1. However, if we apply the reduced model
(23), we obtain u ≈ 3.4 ms−1 which is much higher than the exper-
imental velocity. To bring it down to the observed value, we need
to apply the correction factor K = 2.3, which is a typical correction
factor used in literature dealing with empirical models (Hungr
et al. 1984; Chen 1987; Bulmer et al. 2002; Scheidl et al. 2014).

This analysis shows that the ad hoc velocity correction factors
in the previous empirical models are introduced to substantially
control the unrealistically high velocities. This was due to the fact
that those models could not include the important energy dissi-
pation mechanisms such as friction, twist and passive earth pres-
sure due to compaction in the outer curvature region and
deposition.

2 https://www.youtube.com/watch?v=aGNISaAjbxU
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Debris flow in Chamoson

Estimation of the superelevation velocity
The channel cross section was obtained using a Structure from
Motion (SfM) model combined with a handheld lidar. We used
a Phantom 4 drone to recreate the topography (SfM) and the
GeoSlam (handheld lidar) for the channel. SfM was obtained by
using PhotoScan software (Agisoft 2015), and lidar was acquired
with a handheld ZEB REVO from GeoSlam. The front of the
debris flow has been visually tracked from the timed video
footage.2 In combination with the detailed textured topography
in point cloud format, it was possible to translate those timed
observations on the 3D terrain model. This allowed us to obtain
both the time and position differences, which gave us the flow
velocity. Visualisation of the 3D model has been greatly facili-
tated by the use of the CloudCompare open-source software
(Girardeau-Montaut 2006). The estimated flow front velocity of
the Chamoson event is about u = 6 ms−1. As in the laboratory
granular flow, we also calculated the superelevation velocity for
the Chamoson event from our new model. The physical and

geometrical parameters obtained from the field visit (Fig. 5) are
as follows: ζ = 12∘, μ = 0.47(1 − γh), γ = 0.16, κ = 1/44. As ex-
plained above, this also assumes that the basal friction de-
creases with normal load as modelled by the parameter γ. The
effective maximum change in the flow height from bottom to
the top is about Δh = 4.7 + 0.7 = 5.4 m. The laterally curved
hydraulic perimeter, including extension beyond the peak is
2 × 4.7 + 4.8 + 2.6 + 1.7 = 18.5 m =Δy. This provides ∂h/∂y, with
respect to the laterally curved coordinates. The lateral slope
(corresponding to gy) is determined by joining the central point
of the channel to the distal end of the flow at the outer margin,
which is about 2.4 + 2.6 + 1.7 = 6.7 m. This, with the effective
elevation change of 5.0 m, provides the mean lateral slope of
about ζl = 36°. To include the bend-induced compaction and
twist, we used moderate values of Ky = 1.1 and η = 0.9. However,
these are some plausible estimations of the geotechnical (Ky)
and geometrical (bending or twist η) parameters. Although
these parameters are physically based, the choice of their nu-
merical values should be further explored with sensitivity anal-
ysis (Mergili et al. 2017; Mergili et al. 2018), which, however, is

a

b

Fig. 5 Field data of the Chamoson debris flow event by lidar: flow extent and channel (a), and bending or transversal section (b), with radius of curvature (image from
Swisstopo). The slope is 12%, the radius 44 m and the angle of the curved flow path is 76°
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not within the scope here. Similarly, the curvature and twist
significantly enhance the normal load, which here is modelled
by enhancing the normal load gz by about 30% which is rea-
sonable for such a strongly curved channel. Such enhancement
of gz has been justified at “Laboratory avalanche experiment”.
With this, applying the superelevation velocity (21), we obtain
u ≈ 6.6 ms−1. This value is close to the one estimated from the
event, including field visit and video. However, the reduced
model (23) results in u ≈ 8 ms−1 which is much higher than the
reality. This shows similar discrepancy as in the granular flow
experiments discussed above, requiring a correction factor 2.
However, the error in measurement can be comparable to the
reduced uncertainty of the model.

Superelevation induced propagation and deposition
With the above legitimate estimations of the superelevation veloc-
ities, both for the laboratory and field events, next, we further
explore the possibility to apply our model to qualitatively describe
the superelevation-induced propagation and deposition of the
debris flow in Chamoson (Fig. 2). However, here, we do not aim
to perform direct and full dynamical simulation of the event.
Consider the mass balance equation along the channel
(Pudasaini et al. 2005):

∂h
∂t

þ ∂ huð Þ
∂x

¼ 0: ð28Þ

For the flow along the channel close to the deposition, such as
the one in Chamoson, the cross-slope contributions might be
neglected, and η can be set equal to unity because the torsion is
weak, but the curvature is strong. So, (6) reduces to:

u ¼ 1
μκ

gx−gz Kx
∂h
∂x

þ μ
 �� 	� �1=2

: ð29Þ

This can be written as:

u ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−β

∂h
∂x

r
; ð30Þ

where, α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gx−μgz
� �

=μκ
q

, and β = Kxgz/(gx − μgz). Then, from
(28) and (30), we obtain:

∂h
∂t

þ ∂
∂x

αh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−β

∂h
∂x

r !
¼ 0: ð31Þ

This leads to a complex, non-linear advection and diffusion
equation for the kinematic wave:

∂h
∂t

þ C
∂h
∂x

−D
∂2h
∂x2

¼ 0; ð32Þ

where the advection and diffusion coefficients C and D are com-
plex and non-linear functions of the material and geometrical
parameters, and evolving flow depth h, and the hydraulic pressure
gradient ∂h/∂x: C ¼ C α;β; ∂h=∂xð Þ ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−β ∂h=∂xð Þp

, and
D ¼ D α;β; h; ∂h=∂xð Þ ¼ αβh=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−β ∂h=∂xð Þp ¼ α2βh=2C. S o ,

α = C corresponds to a typical wave speed when ∂h/∂x vanishes,
i.e. the tip of the front head, top of the forehead or stretched main
body or the tail part of the flow where the pressure gradients could
be negligible. In this situation, the diffusion coefficient reduces to
D ¼ αβh=2 ¼ Kxgzh=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μκ gx−μgz
� �q

. This shows that the diffu-
sion varies with the flow depth. Further interesting aspects are the
following: Low friction (μ) implies high advection and diffusion.
Similarly, the flow advection and spreading (reduction in flow
height) are reduced around high bendings, which means flow
moves slowly and flow depth increases around bendings. Both of
these dynamic responses are physically justified. This discussion
also implies that not the α and β, but C and D are physically more
relevant. Since α and β are positive quantities, C is higher in the
front than in the main body. So, the advective flux in the front is
higher than in the main body and the tail. However, due to the
structure of D, the diffusive flux behaves inversely to the advective
flux. These characteristics determine the form of the deforming
debris mass.

Depositional behaviour
The near deposit flow behaviour can be described by the steady-
state flow condition for which (31) reduces to a non-linear ordi-
nary differential equation:

dh
dx

¼ A−
B
h2

; ð33Þ

where both A ¼ gx−μgz
� �

=gzKx, and B ¼ μκ C0=gzKx are func-
tions of physical and geometrical parameters, and C0 is a constant
of integration. Here, B appears to be a linear function of the
channel curvature. This equation can be solved exactly and ana-
lytically to obtain:

x ¼ h
A −

1ffiffiffiffiffiffiffiffiffiffiA=Bp A tanh
−1 ffiffiffiffiffiffiffiffiffiffi

A=B
p

h
h i

þ C; ð34Þ

where C is a constant of integration that can be fixed by the
boundary condition for the flow height at a given location.

Figure 6 shows the solution of the mass distribution that is
similar to the Chamoson debris flow event as described by the
simple analytical model (34), for A ¼ 1, B ¼ 1; 3; 5 (low, medium
and high curvatures) and C ¼ 1:9. The solution captures well the
depositional characteristics, the mass (geometry) distribution and
the blunt toe of the front head. Another important feature of the
new solution is that as the curvature increases, the lateral flow
depth along the channel bank increases. This is in line with the
mechanics of the curvature-induced superelevation because higher
curvature means higher superelevation that results in higher de-
positional depth.
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Propagating front
Equation (32) is a challenge to solve analytically; however, we
solved it numerically by applying the high-resolution TVD-NOC
methods (Tai et al. 2002; Pudasaini 2011). Basal friction is a critical
parameter in mass flows. As explained earlier in the sections
“Importance of different forces in superelevation and flow stop-
ping” and “An explicit description of deposition”, it decreases with
the pressure, and thus the flow depth. Following Pudasaini and
Hutter (2007), we may assume that μ decreases with the flow
depth: μ = μ0(1 − γh), where γ = 0.5 is a typical value, and μ = μ0
is the pressure independent static friction coefficient. The values of
α = 6.0 and β = 1.0 are used for simulation. α can be adjusted with
scaled time. The corresponding time evolution of the debris flow
front is shown in Fig. 7. Qualitatively, this is in line with the
propagating front of the Chamoson debris flow event.

Summary
Superelevation is observed in mass flows taking place in curved
channels that is induced jointly by the topographic curvature and
torsion, and the flow velocity, or the centrifugal force of the flow,

as common features of natural slopes and gullies. Empirical
methods, such as forced vortex, are often used to estimate super-
elevation. However, these methods are based on ad hoc correction
factors as they lack the important aspects of the complex channel
topography and the flow dynamics. Those models could not be
appropriately applied to real three-dimensional channels with
strong curvature and twists. So, empirical models may introduce
serious errors and result in unusually high velocities and flow
rates. Such high velocities could only be controlled empirically
by introducing some correction factors. As those models are not
exact, the degree of approximation of the analysis could not be
determined. Such limitations have not yet been removed by any
existing models.

We have addressed these issues by presenting a new, com-
plete model for superelevation down a general topography pro-
viding a fully dynamical method. Following the first principle
and the mechanics and dynamics of flow, we have derived
general analytical models for superelevation and superelevation
velocities. New models do not require those assumptions as in
empirical methods. They formally include essential forces that

Fig. 7 Propagating front of the debris flow as modelled by (32)
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Fig. 6 Analytical solution for the superelevation-induced deposition of the Chamoson debris flow event as modelled by (34)
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play important role in the flow dynamics, namely gravitational
forces, topographic pressure gradients, hydraulic pressure gra-
dients and the Coulomb friction force (so, the basal friction,
curvature and twist of the slope). With the new analytical
models, in principle, we can exactly obtain the flow velocities,
and (dynamic) impact pressures. So, such descriptions are fun-
damentally new. We have formally provided alternative analyt-
ical definitions for superelevation: (i) The geometrical definition
of superelevation. This is defined as the positive difference of
the elevated flow heights between the outer curvature and inner
curvature of the channel. (ii) Dynamical definition of superele-
vation: This is a fully new concept which relates the superele-
vation to the asymmetry of the transversal velocity. So, for the
superelevation to take place, the transversal velocity must have
a gradient across the channel. Whether or not the supereleva-
tion takes place is determined by the difference in the magni-
tude of the effective longitudinal force on either side of the
channel. We have also presented analytical descriptions for the
halting of the flow associated with the material and topograph-
ical properties of the slope and the net force.

As an important non-dimensional number, we have analytically
constructed a new superelevation number. It is the ratio between
the transversal velocity to the total flow velocity, or, equivalently,
the ratio of net driving force and the resisting frictional force. It
has several important implications. The intensity and degree of
superelevation are determined dynamically or mechanically. We
proved that superelevation is higher for fluid-saturated debris
flows than for dry granular flows. We further revealed that the
superelevation velocity is a function of the superelevation number.
We have now the possibility to explicitly quantify the supereleva-
tion intensity in landslide motion.

New models are reduced after imposing several simplifying as-
sumptions to compare with the existing empirical models. However,
the reduced models turned out to be unrealistic, and do not repre-
sent the true physics of the velocity corresponding to the superele-
vation in a multi-dimensionally curved channel. This is so because,
for the superelevation to take place, the channel must be curved in
both flow directions, and that the curvature and twist must be
present. Furthermore, gravity and friction play a crucial role in
determining the superelevation. A fundamentally important aspect
in inducing superelevation is the direct influence of the topography
on the gravity force components, by the curvature and twist of the
basal surface. Similarly, the topographic pressure gradients play an
important role in inducing superelevation. Classical models lack
these aspects. In contrast to the vortex-based models, our approach
does not require the empirically introduced correction factors, which
stems from the fact that those approaches were incomplete and are
weakly associated with the physics of the process. Our analysis shows
that empirical models only consider some aspects of superelevation
while we have presented a more general, complete and mechanics-
based approach for superelevation.

Some aspects of the new superelevation model have been
validated. We have applied the model against a laboratory
granular flow down a curved and twisted channel, and a
natural debris flow event. Our theoretical superelevation ve-
locity appears to be very close to experimental velocity, which

however, is largely overestimated by the empirical model
without a correction factor. We further validated our model
by applying it to describe superelevation-induced propagation
and deposition of the 2018 Chamoson debris flow event in
Switzerland. For this, we constructed an analytical solution for
the depositional geometry, which qualitatively captured well
the observed characteristics. Furthermore, we developed a
new, complex, non-linear advection and diffusion equation
for the kinematic wave. The simulation of this model pro-
duces propagating front similar to that observed in the
Chamoson debris flow event.

Acknowledgements
We thank the reviewers, editor and the editorial board for
their constructive comments and suggestions that largely
improved the quality and clarity of the paper. We are grate-
ful to Jose Pularello and Jeremie Voumard for their support
to acquire and interpret the lidar and SfM data, for photo-
grammetric work and creation of Fig. 5. Shiva P. Pudasaini
gratefully thanks the Herbette Foundation for providing fi-
nancial support for Sabbatical visit to the University of
Lausanne, Switzerland for the year 2018, April–June, where
this contribution was triggered.

Funding information
This work has been financially supported by the German Research
Foundation (DFG) through the research project PU 386/5-1: “A
novel and unified solution to multi-phase mass flows: UMultiSol”.

Notations
b basal surface of flow
B channel width
A;B functions of physical, geometrical parameters
C master curve
C, D non-linear advection, diffusion coefficients
Cx, Cy, Ct coefficients of (dynamic) impact pressures, total pressure
C; C0 constant of integration
e corresponds to superelevation in transportation lines
f corresponds to friction in transportation lines
Fx, Fy net driving forces along x, y
g gravity constant
gx, gy, gz components of gravitational acceleration
H assumed hydraulic pressure gradient
h debris flow depth
ho, hi flow depths in outer and inner curvatures of channel
I =I SNð Þ, superelevation intensity
K empirical superelevation correction factor
Kx, Ky earth pressure coefficients
Kyp ;Kya passive/active Ky on outer/inner flanks
O coordinate origin, at master curve or talweg
px, py, pt (dynamic) impact pressures, total pressure
Pu =μκη, unified parameter
R =1/κ, radius of curvature
s length along the channel
SN superelevation number
t time
u, v velocity components along x, y
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u =(u, v)
vo, vi, velocities on outer and inner flanks of slope
x, y, z coordinate lines/flow directions
α, β advection, diffusion flux parameters
γ pressure parameter
δ basal friction angle
ζ, ζl channel slope angle, mean lateral slope
η, ϕ, ccumulation of torsion
θ azimuthal angle
κ curvature
λ pore pressure ratio
μ; μe, μ0 = tan δ, friction coefficient; static, effective μ
τ torsion
ϕ0 reference value of ϕ

References

Agisoft LLC (2015) Agisoft PhotoScan user manual, professional edition, version 1.2.6
Allen JRL (1985) Principles of physical sedimentology. Springer, New York
Apmann RP (1973) Estimating discharge from superelevation in bends. J Hydraul Div,

ASCE 99:65–79
Badoux H (1971) Feuille 1305 Dt de Morcles et notice explicative Atlas geol. Suisse

1:25000. Comm. geol. Suisse
Bertolo P, Wieczorek GF (2005) Calibration of numerical models for small debris flows in

Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 5:993–1001
Bregoli F, Medina V, Bateman A (2018) TXT-tool 3.034-2.1 a debris flow regional fast

hazard assessment toolbox, in: Landslide dynamics: ISDR-ICL landslide interactive
teaching tools. https://doi.org/10.1007/978-3-319-57777-7_10

Bulmer MH, Barnouin-Jha OS, Peitersen MN, Bourke M (2002) An empirical approach to
studying debris flows: implications for planetary modeling studies. J Geophys Res
107:9–1–9-14. https://doi.org/10.1029/2001JE001531

Chen CL (1987) Comprehensive review of debris flow modelling concepts in Japan. Geol
Soc Am Rev Eng Geol 7:13–29. https://doi.org/10.1130/REG7-p13

Chow VT (1959) Open channel hydraulics. McGrayv-Hill Book Company, New York
Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow

avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14
Costa JE (1984) Physical geomorphology of debris flows. In: Costa JE, Fleisher P (eds)

Developments and applications of geomorphology. Springer-Verlag, Berlin, pp 268–317
Cunningham B (1937) River flow around bends. Nature 140:728–729
Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview.

Eng Geol 64(1):65–87. https://doi.org/10.1016/S0013-7952(01)00093-X
de Blasio FV (2011) Introduction to the physics of landslides: lecture notes on the

dynamics of mass wasting. Springer, Berlin
de Haas T, Braat L, Leuven JRFW, Lokhorst IR, Kleinhans MG (2015) Effects of debris flow

composition on runout, depositional mechanisms, and deposit morphology in labo-
ratory experiments. J Geophys Res Earth Surf 120:1949–1972

Domnik B, Pudasaini SP, Katzenbach R, Miller SA (2013) Coupling of full two-dimensional
and depth-averaged models for granular flows. J Non-Newton Fluid Mech 201:56–68

Faug T (2015) Depth-averaged analytic solutions for free-surface granular flows
impacting rigid walls down inclines. Phys Rev E:92. https://doi.org/10.1103/
PhysRevE.92.062310

Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for
landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol
102(3):85–98. https://doi.org/10.1016/j.enggeo.2008.03.022

Fischer JT, Kowalski K, Pudasaini SP (2012) Topographic curvature effects in applied
avalanche modeling. Cold Reg Sci Technol 74:21–30

Girardeau-Montaut, D (2006) Detection de changement sur des donnees geometriques
tridimensionnelles. PhD Thesis, Telecom ParisTech. https://tel.archives-ouvertes.fr/
pastel-00001745/

Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng
Geol 58:89–107

Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis.
Comput Geosci 35:978–992

Hungr O, Morgan GC, Kellerhals R (1984) Quantitative analysis of debris torrent hazards
for design of remedial measures. Can Geotech J 21(4):663–677. https://doi.org/
10.1139/t84-073

Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an
update. Landslides 11(2):167–194

Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-
dimensional terrain: 1. Coulomb mixture theory. J Geophys Res 106(B1):537–552

Jakob M (2005) Debris-flow hazard analysis. In: Jakob and Hungr (eds) Debris-flow
hazards and related phenomena, pp 411–443

Johnson AM, Rodine JR (1984) Debris flow. In: Brunsden D, Prior DB (eds) Slope
instability, pp 257–361

Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature
441:727–730

Kattel P, Kafle J, Fischer JT, Mergili M, Tuladhar BM, Pudasaini SP (2018) Interaction of
two-phase debris flow with obstacles. Eng Geol 242:197–217

Khattri KB, Pudasaini SP (2018) An extended quasi two-phase mass flow model. Int J Non
Linear Mech 106:205–222

Khattri KB, Pudasaini SP (2019) Channel flow simulation of a mixture with a full-
dimensional generalized quasi two-phase model. Math Comput Simul 165:280–305

Leroi E, Bonnard Ch, Fell R, McInnes R (2005) “Risk assessment and management. In:
Hungr O., Fell R., Couture R. (Eds.) Landslide risk management, Vancouver, Proceed-
ings of International Conference on Landslide Risk Management, Vancouver, Cana-
da,31 May-02 June, 139–198

McClung DM (2001) Superelevation of flowing avalanches around curved channel bends.
J Geophys Res 106:16489–16498

Medina V, Hürlimann M, Bateman A (2008) Application of FLATModel, a 2D finite volume
code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides
5:127–142

Mergili M, Fischer JT, Krenn J, Pudasaini SP (2017) r.avaflow v1, an advanced open-
source computational framework for the propagation and interaction of two-phase
mass flow. Geosci Model Dev 10:553–569. https://doi.org/10.5194/gmd-10-553-2017

Mergili M, Emmer A, Juricova A, Cochachin A, Fischer JT, Huggel C, Pudasaini SP (2018)
How well can we simulate complex hydro-geomorphic process chains? The 2012
multi-lake outburst flood in the Santa Cruz Valley (Cordillera Blanca, Peru). Earth Surf
Process Landf 43:1373–1389

Mizuyama T, Uehara S (1981) Debris flow in steep slope channel curves. Jpn J Civ Eng
23:243–248

O’Brien JS, Julien PY, Fullerton WT (1993) Two dimensional water flood and mudflow
simulation. J Hydraul Eng ASCE 119:244–261

Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated,
coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal
Methods Geomech 33:143–172

Pokhrel PR, Khattri KB, Tuladhar BM, Pudasaini SP (2018) A generalized quasi two-phase
bulk mixture model for mass flow. Int J Non Linear Mech 99:229–239

Potyondy PG (1961) Skin friction between various soils and construction materials.
Geotechnique 11:339–353

Prochaska AB, Santi PM, Higgins JD, Cannon SH (2008) A study of methods to estimate
debris flow velocity. Landslides 5:431–444

Pudasaini SP (2011) Some exact solutions for debris and avalanche flows. Phys Fluids
23(4):043301. https://doi.org/10.1063/1.3570532

Pudasaini SP (2012) A general two-phase debris flow model. J Geophys Res 117:F03010.
https://doi.org/10.1029/2011JF002186

Pudasaini SP, Hutter K (2003) Rapid shear flows of dry granular masses down curved and
twisted channels. J Fluid Mech 495:193–208

Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense
granular avalanches. Springer, Berlin

Pudasaini SP, Mergili M (2019) A multi-phase mass flow model. J Geophys Res Earth Surf.
https://doi.org/10.1029/2019JF005204

Pudasaini SP, Miller SA (2013) The hypermobility of huge landslides and avalanches. Eng
Geol 157:124–132

Pudasaini SP, Wang Y, Hutter K (2005) Modelling debris flows down general channels.
Nat Hazards Earth Syst Sci 5:799–819

Pudasaini SP, Wang Y, Sheng LT, Hsiau SS, Hutter K, Katzenbach R (2008) Avalanching
granular flows down curved and twisted channels: theoretical and experimental
results. Phys Fluids 20:073302. https://doi.org/10.1063/1.2945304

Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77
Savage SB, Hutter K (1991) The dynamics of avalanches of granular materials from

initiation to runout. Part I: analysis. Acta Mech 86:201–223

Landslides

http://dx.doi.org/10.1007/978-3-319-57777-7_10
http://dx.doi.org/10.1029/2001JE001531
http://dx.doi.org/10.1130/REG7-p13
http://dx.doi.org/10.1016/S0013-7952(01)00093-X
http://dx.doi.org/10.1103/PhysRevE.92.062310
http://dx.doi.org/10.1103/PhysRevE.92.062310
http://dx.doi.org/10.1016/j.enggeo.2008.03.022
https://tel.archives-ouvertes.fr/pastel-00001745/
https://tel.archives-ouvertes.fr/pastel-00001745/
http://dx.doi.org/10.1139/t84-073
http://dx.doi.org/10.1139/t84-073
http://dx.doi.org/10.5194/gmd-10-553-2017
http://dx.doi.org/10.1063/1.3570532
http://dx.doi.org/10.1029/2011JF002186
http://dx.doi.org/10.1029/2019JF005204
http://dx.doi.org/10.1063/1.2945304


Scheidl C, McArdell BW, Rickenmann D (2014) Debris-flow velocities and superelevation
in a curved laboratory channel. Can Geotech J 52:305–317

Schoklitsch A (1937) “Hydraulic structures” translated from the German by Samuel
Shulitz. Am Soc Mech Eng New York I:151

Shukry A (1950) FIow around bends in an open flume. Trans Am Soc Civ Eng 115:751–
779

Stethem C (2013) Avalanches. In: Bobrowsky PT (ed) Encyclopedia of natural hazards.
Encyclopedia of Earth Sciences Series. Springer, Dordrecht

Tai YC, Noelle S, Gray JMNT, Hutter K (2002) Shock-capturing and front-tracking methods
for granular avalanches. J Comput Phys 175:269–301

Thomson J (1876) On the origin and winding of rivers in alluvial plains, with remarks on
the flow around bends in pipes. Proc R Soc London 25:5–8

Torbic DJ, O’Laughlin MK, Harwood DW, Bauer KM, Bokenkroger CD, Lucas LM,
Ronchetto JR, Brennan S, Donnell E, Brown A, Varunjikar T (2014) Superelevation
criteria for sharp horizontal curves on steep grades. National Cooperative Highway
Research Program, NCHRP REPORT 774. Transportation Research Board, Washington,
D.C.

von Boetticher A, Turowski JM, McArdell BW, Rickenmann D, Kirchner JW (2016)
Debrisintermixing-2.3: a finite volume solver for three-dimensional debris-flow sim-
ulations with two calibration parameters-part 1: model description. Geosci. Model Dev
9:2909–2923

von Boetticher A, Turowski JM, McArdell BW, Rickenmann D, Hürlimann M, Scheidl C,
Kirchner JW (2017) DebrisInterMixing-2.3: a finite volume solver for three-
dimensional debris-flow simulations with two calibration parameters - part 2: model
validation. Geosci Model Dev 10(706):3963–3978

Woodward SM (1920) Hydraulics of the Miami flood control project. Miami Conservancy
District, Technical Report, Pt. VII, Daytron, Ohio

Woodward SM, Posey CJ (1941) Hydraulics of steady flow in open channels. Wiley, New
York, p 112

S. P. Pudasaini ())
Institute of Geosciences, Geophysics Section,
University of Bonn,
Meckenheimer Allee 176, D-53115, Bonn, Germany
Email: pudasaini@geo.uni-bonn.de

M. Jaboyedoff
Faculte des geosciences et de l’environnement, Risk-group - ISTE - Institute of Earth
Sciences,
University of Lausanne,
GEOPOLIS - 3793, CH-1015, Lausanne, Switzerland

Original Paper

Landslides


	A general analytical model for superelevation in landslide
	Abstract
	Introduction
	Superelevation in laboratory and field
	A laboratory experiment of superelevation
	A natural example of superelevation

	Model development
	Longitudinal velocity
	Definition of superelevation
	Geometrical definition of superelevation
	Dynamical definition of superelevation

	Transversal velocity
	Superelevation velocity
	Superelevation number
	Alternative geometrical definition of superelevation
	Scope of the model

	Discussions on important aspects of the new model
	Importance of different forces in superelevation and flow stopping
	An explicit description of deposition
	Longitudinal motion caused by lateral forces
	Estimating velocities and pressures
	Comparison with existing models
	Importance of geometry in inducing superelevation
	Superelevation in transportation lines

	Model applications
	Laboratory avalanche experiment
	Debris flow in Chamoson
	Estimation of the superelevation velocity
	Superelevation induced propagation and deposition
	Depositional behaviour
	Propagating front


	Summary
	References


