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Abstract. Proper knowledge of velocity is required in accurately determining the enormous destructive energy
carried by a landslide. We present the first, simple and physics-based general analytical landslide velocity model
that simultaneously incorporates the internal deformation (nonlinear advection) and externally applied forces,
consisting of the net driving force and the viscous resistant. From the physical point of view, the model represents
a novel class of nonlinear advective–dissipative system, where classical Voellmy and inviscid Burgers’ equations
are specifications of this general model. We show that the nonlinear advection and external forcing fundamentally
regulate the state of motion and deformation, which substantially enhances our understanding of the velocity of
a coherently deforming landslide. Since analytical solutions provide the fastest, most cost-effective, and best
rigorous answer to the problem, we construct several new and general exact analytical solutions. These solutions
cover the wider spectrum of landslide velocity and directly reduce to the mass point motion. New solutions bridge
the existing gap between negligibly deforming and geometrically massively deforming landslides through their
internal deformations. This provides a novel, rapid, and consistent method for efficient coupling of different
types of mass transports. The mechanism of landslide advection, stretching, and approaching the steady state
has been explained. We reveal the fact that shifting, uplifting, and stretching of the velocity field stem from the
forcing and nonlinear advection. The intrinsic mechanism of our solution describes the fascinating breaking wave
and emergence of landslide folding. This happens collectively as the solution system simultaneously introduces
downslope propagation of the domain, velocity uplift, and nonlinear advection. We disclose the fact that the
domain translation and stretching solely depend on the net driving force, and along with advection, the viscous
drag fully controls the shock wave generation, wave breaking, folding, and also the velocity magnitude. This
demonstrates that landslide dynamics are architectured by advection and reigned by the system forcing. The
analytically obtained velocities are close to observed values in natural events. These solutions constitute a new
foundation of landslide velocity in solving technical problems. This provides practitioners with key information
for instantly and accurately estimating the impact force that is very important in delineating hazard zones and
for the mitigation of landslide hazards.

1 Introduction

There are three methods to investigate and solve a scien-
tific problem: laboratory or field data, numerical simulations
of governing complex physical–mathematical model equa-
tions, or exact analytical solutions of simplified model equa-
tions. This is also the case for mass movements including ex-

tremely rapid flow-type landslides such as debris avalanches
(Pudasaini and Hutter, 2007). The dynamics of a landslide
are primarily controlled by the flow velocity. Estimation of
the flow velocity is key for assessment of landslide hazards,
design of protective structures, mitigation measures, and land
use planning (Tai et al., 2001; Pudasaini and Hutter, 2007;
Johannesson et al., 2009; Christen et al., 2010; Dowling and
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Santi, 2014; Cui et al., 2015; Faug, 2015; Kattel et al., 2018).
Thus, a proper understanding of landslide velocity is a crucial
requirement for an appropriate modeling of landslide impact
force because the associated hazard is directly and strongly
related to the landslide velocity (Huggel et al., 2005; Evans et
al., 2009; Dietrich and Krautblatter, 2019). However, the me-
chanical controls of the evolving velocity, run-out, and im-
pact energy of the landslide have not yet been understood
well.

Due to the complex terrain, infrequent occurrence, and
very high time and cost demands of field measurements, the
available data on landslide dynamics are insufficient. Proper
understanding and interpretation of the data obtained from
field measurements are often challenging because of the very
limited nature of the material properties and the boundary
conditions. Additionally, field data are often only available
for single locations and determined as static data after events.
Dynamic data are rare (de Haas et al., 2020). So, many of the
low-resolution measurements are locally or discretely based
on points in time and space (Berger et al., 2011; Schürch
et al., 2011; McCoy et al., 2012; Theule et al., 2015; Diet-
rich and Krautblatter, 2019). Therefore, laboratory or field
experiments (Iverson et al., 2011; de Haas and van Wo-
erkom, 2016; Lu et al., 2016; Lanzoni et al., 2017; Li et al.,
2017; Pilvar et al., 2019; Baselt et al., 2021) and theoretical
modeling (Le and Pitman, 2009; Pudasaini, 2012; Pudasaini
and Mergili, 2019) remain the major source of knowledge
in landslide and debris flow dynamics. Recently, there has
been a rapid increase in comprehensive numerical modeling
for mass transports (McDougall and Hungr, 2005; Medina
et al., 2008; Cascini et al., 2014; Frank et al., 2015; Iver-
son and Ouyang, 2015; Cuomo et al., 2016; Mergili et al.,
2020a, b; Qiao et al., 2019; Liu et al., 2021). However, to
a certain degree, numerical simulations are approximations
of the physical–mathematical model equations. Their useful-
ness is often evaluated empirically (Mergili et al., 2020a, b).
In contrast, exact analytical solutions (Faug et al., 2010; Pu-
dasaini, 2011) can provide better insights into the complex
flow behaviors, mainly the velocity. Moreover, analytical and
exact solutions to nonlinear model equations are necessary to
elevate the accuracy of numerical solution methods (Chalfen
and Niemiec, 1986; Pudasaini, 2011, 2016; Pudasaini et al.,
2018). For this reason, here, we are mainly concerned with
presenting exact analytical solutions for the newly developed
general landslide velocity equation.

Since Voellmy’s pioneering work, several analytical mod-
els and their solutions have been presented in the literature
for mass movements including extremely rapid flow-type
landslide processes, avalanches, and debris flows (Voellmy,
1955; Salm, 1966; Perla et al., 1980; McClung, 1983). How-
ever, on the one hand, all of these solutions are effectively
simplified to the mass point or center of mass motion. None
of the existing analytical velocity models consider advection
or internal deformation. On the other hand, the parameters
involved in these models only represent restricted physics of

the landslide material and motion. Nevertheless, a full ana-
lytical model that includes a wide range of essential physics
of the mass movements incorporating important process of
internal deformation and motion is still lacking. This is re-
quired for the more accurate description of landslide mo-
tion. Moreover, recently presented simple analytical solu-
tions for mass transports considered debris avalanches (Pu-
dasaini, 2011), two-phase flows (Ghosh Hajra et al., 2017,
2018), landslide mobility (Pudasaini and Miller, 2013; Parez
and Aharonov, 2015), fluid flows in debris materials (Puda-
saini, 2016), mud flow (Di Cristo et al., 2018), granular front
down an incline (Saingier et al., 2016), granular monoclinal
wave (Razis et al., 2018), and submarine debris flows (Rui
and Yin, 2019). However, neither a more general landslide
model as we have derived here nor the solution for such a
model exists in the literature.

This paper presents a novel nonlinear advective–
dissipative transport equation with a quadratic source term
representing the system forcing, containing the physical and
mechanical parameters as a function of the state variable
(the velocity) and their exact analytical solutions describing
the landslide motion. The new landslide velocity model and
its analytical solutions are more general and constitute the
full description for velocities with a wide range of applied
forces and the internal deformation. Importantly, the newly
developed landslide velocity model covers both the classical
Voellmy and inviscid Burgers’ equations as special cases; it
unifies and extends them further, but it also describes funda-
mentally novel and broad physical phenomena.

It is a challenge to construct exact analytical solutions
even for the simplified problems in mass transport (Puda-
saini, 2011, 2016; Di Cristo et al., 2018; Pudasaini et al.,
2018). In contrast to the existing models, such as Voellmy-
type and Burgers-type, the great complexity in solving the
new landslide velocity model analytically derives from the
simultaneous presence of the internal deformation (nonlinear
advection, inertia) and the quadratic source representing ex-
ternally applied forces (in terms of velocity, including physi-
cal parameters). However, here, we construct various analyt-
ical and exact solutions to the new general landslide veloc-
ity model by applying different advanced mathematical tech-
niques, including those presented by Nadjafikhah (2009) and
Montecinos (2015). We reveal several major novel dynamical
aspects associated with the general landslide velocity model
and its solutions. We show that a number of important phys-
ical phenomena are captured by the new solutions. This in-
cludes landslide propagation and stretching, wave generation
and breaking, and landslide folding. We also observe that dif-
ferent methods consistently produce similar analytical solu-
tions. This highlights the intrinsic characteristics of the land-
slide motion described by our new model. As exact analyt-
ical solutions disclose many new and essential physics, the
solutions derived in this paper may find applications in envi-
ronmental, engineering, and industrial mass transport down
slopes and channels.
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2 Basic balance equation for landslide motion

2.1 Mass and momentum balance equations

A geometrically two-dimensional motion down a slope is
considered. Let t be time, (x, z) be the coordinates, and (gx ,
gz) the gravity accelerations along and perpendicular to the
slope, respectively. Let h and u be the flow depth and the
mean flow velocity along the slope. Similarly, let γ , αs, and
µ be the density ratio between the fluid and the particles
(γ = ρf/ρs), volume fraction of the solid particles (coarse
and fine solid particles), and the basal friction coefficient
(µ= tanδ), where δ is the basal friction angle, in the mixture
material. Furthermore, K is the Earth pressure coefficient as
a function of internal and basal friction angles, and CDV is
the viscous drag coefficient.

We start with the multi-phase mass flow model (Pudasaini
and Mergili, 2019) and include viscous drag (Pudasaini and
Fischer, 2020). For simplicity, we assume that the relative
velocity between coarse and fine solid particles (us, ufs) and
the fluid phase (uf) in the landslide (debris) material is negli-
gible: that is, us ≈ ufs ≈ uf =: u, and so is the viscous de-
formation of the fluid. This means, for simplicity, we are
considering an effectively single-phase mixture flow. Then,
by summing up the mass and momentum balance equations
(Pudasaini and Mergili, 2019; Pudasaini and Fischer, 2020),
we obtain a single mass and momentum balance equation de-
scribing the motion of a landslide as

∂h

∂t
+
∂

∂x
(hu)= 0, (1)

∂

∂t
(hu)+

∂

∂x

[
hu2
+ (1− γ )αsg

zK
h2

2

]
= h

[
gx − (1− γ )αsg

zµ− gz {1− (1− γ )αs}
∂h

∂x
−CDVu

2
]
, (2)

where −(1−αs)gz∂h/∂x emerges from the hydraulic pres-
sure gradient associated with possible interstitial fluids in the
landslide. Moreover, the term containing K on the left-hand
side and the other terms on the right-hand side in the mo-
mentum equation (Eq. 2) represent all the involved forces.
The first term in the square brackets on the left-hand side of
Eq. (2) describes the advection, while the second term (in the
square brackets) describes the extent of the local deformation
that stems from the hydraulic pressure gradient of the free
surface of the landslide. The first, second, third, and fourth
terms on the right-hand side of Eq. (2) are the gravitational
acceleration, effective Coulomb friction (which includes lu-
brication (1− γ ), liquefaction (αs)) (because if there is no
solid or a substantially low amount of solid, the mass is fully
liquefied, e.g., lahar flows), the term associated with buoy-
ancy and the fluid-related hydraulic pressure gradient, and
the viscous drag, respectively. Note that the term with 1−γ or
γ originates from the buoyancy effect. By setting γ = 0 and
αs = 1, we obtain a dry landslide, grain flow, or an avalanche
motion. For this choice, the third term on the right-hand side

vanishes. However, we keep γ and αs to also include possible
fluid effects in the landslide (mixture).

2.2 The landslide velocity equation

The momentum balance equation (Eq. 2) can be rewritten as

h

[
∂u

∂t
+u

∂u

∂x

]
+ u

[
∂h

∂t
+
∂

∂x
(hu)

]
= h

[
gx − (1− γ )αsg

zµ− gz {((1− γ )K + γ )αs

+ (1−αs)}
∂h

∂x
−CDVu

2
]
. (3)

Note that for K = 1 (which mostly prevails for extensional
flows; Pudasaini and Hutter, 2007), the third term on the
right-hand side associated with ∂h/∂x simplifies drastically
because {((1−γ )K+γ )αs+(1−αs)} becomes unity. So, the
isotropic assumption (i.e., K = 1) loses some important in-
formation about the solid content and the buoyancy effect in
the mixture. Employing the mass balance equation (Eq. 1),
the momentum balance equation (Eq. 3) can be rewritten as

∂u

∂t
+ u

∂u

∂x
= gx − (1− γ )αsg

zµ− gz {((1− γ )K + γ )αs

+ (1−αs)}
∂h

∂x
−CDVu

2. (4)

The gradient ∂h/∂x might be approximated, say as hg, and
still include its effect as a parameter that may be estimated.
Here, we are mainly interested in developing a simple but
more general landslide velocity model than the existing ones
that can be solved analytically and highlight its essence to
enhance our understanding of landslide dynamics.

Now, with the notation α := gx− (1−γ )αsg
zµ−gz{((1−

γ )K + γ )αs+ (1−αs)}hg (this includes the forces gravity,
friction, lubrication, and liquefaction as well as the surface
gradient) and β := CDV (the viscous drag coefficient), Eq. (4)
becomes a simple model equation:

∂u

∂t
+ u

∂u

∂x
= α−βu2, (5)

where α and β constitute the net driving and the resisting
forces in the system. We call Eq. (5) the landslide velocity
equation.

2.3 A novel physical–mathematical system

Equation (5) constitutes a novel class of nonlinear advective–
dissipative system and involves dynamic interactions be-
tween the nonlinear advective (or inertial) term u∂u/∂x and
the external forcing (source) term α−βu2. However, in con-
trast to the viscous Burgers’ equation wherein the dissipation
is associated with the (viscous) diffusion, here, dissipation
stems from the viscous drag, −βu2. In form, Eq. (5) is sim-
ilar to the classical shallow-water equation. However, from
the mechanics and the material composition, it is much wider
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as such a model does not exist in the literature. From the
physical and mathematical point of view, there are two cru-
cial novel aspects associated with the model (Eq. 5). First,
it explains the dynamics of a deforming landslide and thus
extends the classical Voellmy model (Voellmy, 1955; Salm,
1966; McClung, 1983; Pudasaini and Hutter, 2007) due to
the broad physics carried by the model parameters α and β
as well as the dynamics described by the new term u∂u/∂x.
These parameters and the term u∂u/∂x control the landslide
deformation and motion. Second, it extends the classical non-
linear inviscid Burgers’ equation by including the nonlinear
source term, α−βu2, as a quadratic function of u, taking into
account many different forces.

From the structure, Eq. (5) is a fundamental nonlinear
partial differential equation, or a nonlinear transport equa-
tion with a source, where the source is the external physical
forcing. Such an equation explains the nonlinear advection
with source term that contains the physics of the underlying
problem through the parameters α and β. The form of this
equation is very important as it may describe the dynamical
state of many extended (compared to the Voellmy and Burg-
ers models) physical and engineering problems appearing
in nature, science, and technology, including viscous–fluid
flow, traffic flow, shock theory, gas dynamics, landslides, and
avalanches (Burgers, 1948; Hopf, 1950; Cole, 1951; Nad-
jafikhah, 2009; Pudasaini, 2011; Montecinos, 2015).

3 The landslide velocity: simple solutions

Exact analytical solutions to simplified cases of nonlinear
debris avalanche model equations provide important insight
into the full behavior of the system and are necessary to cal-
ibrate numerical simulations. Physically meaningful exact
solutions explain the true and entire nature of the problem
associated with the model equation (Pudasaini, 2011; Faug,
2015) and should thus be developed, analyzed and properly
understood prior to numerical simulations. These exact ana-
lytical solutions provide important insights into the full flow
behavior of the complex system (Pudasaini and Krautblatter,
2021a) and are often needed to calibrate and validate the nu-
merical solutions (Pudasaini, 2016) as a prerequisite before
running numerical simulations based on complex numerical
schemes. This is very useful to interpret complicated simula-
tions and/or avoid mistakes associated with numerical simu-
lations.

One of the main purposes of this contribution is to obtain
exact analytical velocities for the landslide model (Eq. 5). In
form, Eq. (5) is simple. So, one may attempt to solve it ana-
lytically to explicitly obtain the landslide velocity. However,
it poses a great mathematical challenge to derive explicit an-
alytical solutions for the landslide velocity, u. This is mainly
due to the new terms appearing in Eq. (5). Below, we con-
struct five different exact analytical solutions to Eq. (5) in ex-
plicit form. The solutions are compared to each other. Equa-

tion (5) can be considered in two different ways: steady-state
and transient motions as well as without and with (internal)
deformation that is described by the term u∂u/∂x.

3.1 Steady-state motion

For a sufficiently long time and sufficiently long slope,
the time-independent steady-state motion can be developed.
Then, Eq. (5) reduces to a simplified equation for the land-
slide velocity down the entire slope:

∂

∂x

(
1
2
u2
)
= α−βu2. (6)

Equivalently, this also represents a mass point velocity along
the slope. Classically, Eq. (6) is called the center of mass ve-
locity of a dry avalanche of flow type (Perla et al., 1980) for
γ = 0, αs = 1, K = 1, and a negligible free-surface pressure
gradient. This will be discussed in detail in Sect. 3.2.

3.1.1 Negligible viscous drag

In situations when the Coulomb friction is dominant and
the motion is slow, the viscous drag contribution can be ne-
glected (βu2

≈ 0), e.g., typically the moment after the mass
release. Then, the solution to Eq. (6) is given by (solution A):

u(x;α)=
√

2α (x− x0)+ u2
0, (7)

where u0 is the initial velocity at x0 (or a boundary con-
dition). Solution (Eq. 7) recovers the landslide velocity ob-
tained by considering the simple energy balance for a mass
point in which only the gravity and simple dry Coulomb
frictional forces are considered (Scheidegger, 1973); both of
these forces are included in α. Furthermore, when the slope
angle is sufficiently high or close to vertical, Eq. (7) also rep-
resents a nearly free-fall landslide or rockfall velocity.

3.1.2 Viscous drag included

In general, depending on the magnitude of the net driving
force (that also includes the Coulomb friction), the viscous
drag coefficient and the magnitude of the velocity, either α
or βu2, or both can play an important role in determining the
landslide motion. Then, the more general solution for Eq. (6)
than Eq. (7) takes the form (solution B)

u(x;α,β)=

√
α

β

[
1−

(
1−

β

α
u2

0

)
1

exp(2β (x− x0))

]
, (8)

where u0 is the initial velocity at x0. We note that as β→ 0,
the solution (Eq. 8) approaches Eq. (7). The velocity given by
Eq. (8) can be compared to the Voellmy velocity and be used
to calculate the speed of an avalanche (Voellmy, 1955; Mc-
Clung, 1983). However, the Voellmy model only considers
the reduced physical aspects in which α merely includes the
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Figure 1. The landslide velocity distributions down the slope as a function of position both without and with drag given by Eqs. (7) and (8),
respectively. With drag, the flow attains the terminal velocity u

T x
≈ 60.1 m s−1 at about x = 600 m, but without drag, the flow velocity

increases unboundedly.

gravitational force due to the slope and the dry Coulomb fric-
tional force. This will be discussed in more detail in Sect. 3.2.
As in Eq. (7), the solution (Eq. 8) can also represent a nearly
free-fall landslide (or rockfall) velocity when the slope angle
is sufficiently high, but now it also includes the influence of
drag, akin to the sky jump.

The major aspect of viscous drag is to bring the velocity
(motion) to a terminal velocity (steady, uniform) for a suffi-
ciently long travel distance. This is achieved by the following
relation obtained from Eq. (8):

lim
x→∞

u=

√
α

β
=: u

T x
, (9)

where u
T x

stands for the terminal velocity of a deformable
mass, or a mass point motion (Voellmy), along the slope
that is often used to calculate the maximum velocity of an
avalanche (Voellmy, 1955; McClung, 1983; Pudasaini and
Hutter, 2007).

In what follows, unless otherwise stated, we use the plau-
sibly chosen physical parameters for rapid mass movements:
slope angle of about 50◦, γ = 1100/2700, αs = 0.65, and
δ = 20◦ (Mergili et al., 2020a, b; Pudasaini and Fischer,
2020). This implies the model parameters α = 7.0 and β =
0.0019. However, in principle, all of the results presented
here are valid for any choice of the parameter set {α, β}. For
simplicity, u0 = 0 is set at x0 = 0 at the position of the mass
release. Figure 1 displays the velocity distributions of a land-
slide down the slope as a function of the slope position x.
The magnitudes of the solutions presented here are mainly
for reference purposes. For the orders of magnitude of veloc-
ities of natural events, we refer to Sect. 3.2.2. The velocities
in Fig. 1 with and without drag already behave completely
differently after the mass has moved a certain distance. For a
relatively small travel distance, say x ≤ 50 m, these two so-

lutions are quite similar as the viscous drag is not sufficiently
effective yet. The difference increases rapidly as the mass
slides further down the slope. With the drag, the terminal ve-
locity is attained at a sufficient distance. But, without drag,
the velocity increases forever, which is less likely for a mass
propagating down a long distance.

3.2 A mass point motion

Assume no or negligible local deformation (e.g., ∂u/∂x ≈ 0)
or a Lagrangian description; both are equivalent to the mass
point motion. In this situation, only the ordinary differenti-
ation with respect to time is involved, and ∂u/∂t can be re-
placed by du/dt . Then, the model (Eq. 5) reduces to

du

dt
= α−βu2. (10)

Perla et al. (1980) also called Eq. (10) the governing equa-
tion for the center of mass velocity but for a dry avalanche of
flow type. This is a simple nonlinear first-order ordinary dif-
ferential equation. This equation can be solved to obtain an
exact analytical solution for the landslide velocity in terms of
a tangent hyperbolic function (solution C):

u(t;α,β)=
√
α

β
tanh

[√
αβ (t − t0)+ tanh−1

(√
β

α
u0

)]
, (11)

where u0 = u(t0) is the initial velocity at time t = t0. Equa-
tion (11) provides the time evolution of the velocity of the co-
herent (without fragmentation and substantial deformation)
sliding mass until the time it fragments and/or moves like an
avalanche. After that, we must use the full dynamical mass
flow model (Pudasaini, 2012; Pudasaini and Mergili, 2019)
or Eqs. (1) and (2). For more detail, see Sect. 6.1. For a suf-
ficiently long time, the viscous force brings the motion to a
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Figure 2. Time evolution of the landslide velocity down the slope with drag given by Eq. (11). The motion attains terminal velocity at about
t = 15 s.

non-accelerating state (steady, uniform). Then, from Eq. (11)
we obtain

lim
t→∞

u=

√
α

β
=: u

T t , (12)

where u
T t stands for the terminal velocity of the motion of a

point mass.

The landslide position

Since u(t)= dx/dt , Eq. (11) can be integrated to obtain the
landslide position as a function of time:

x(t;α,β)= x0+
1
β

ln

[
cosh

{√
αβ (t − t0)− tanh−1

(√
β

α
u0

)}]

−
1
β

ln

[
cosh

{
−tanh−1

(√
β

α
u0

)}]
, (13)

where x0 corresponds to the position at the initial time t0.
Figure 2 displays the velocity profile of a landslide as a

function of time as given by Eq. (11). The terminal velocity(
u
T t =
√
α/β

)
is attained at a sufficiently long time (∼ 15 s).

In the structure, the model (Eq. 10) and its solution (11) exist
in the literature (Pudasaini and Hutter, 2007) and are clas-
sically called Voellmy’s mass point model (Voellmy, 1955)
or the Voellmy–Salm model (Salm, 1966) that disregards the
position dependency of the landslide velocity (Gruber, 1989).
But, (1− γ ), αs, and the term associated with hg are new
contributions not included in the Voellmy model, as well as
K = 1 therein, while in our consideration α and K can be
chosen appropriately. Thus, the Voellmy model corresponds
to the substantially reduced form of α, with α = gx − gzµ.

3.2.1 The dynamics controlled by the physical and
mechanical parameters

The solutions in Eqs. (8) and (11) are constructed indepen-
dently: one for the velocity of a deformable mass as a func-
tion of travel distance, or the velocity of the center of mass of
the landslide down the slope, and the other for the velocity of
a mass point motion as a function of time. Unquestionably,
they have their own dynamics. However, for a sufficiently
long distance and sufficiently long time, or in the space and
time limits, these solutions coincide and we obtain a unique
relationship:

u
T x
= u

T t =

√
α

β
. (14)

So, after a sufficiently long distance or a sufficiently long
time, the forces associated with α and β always maintain
a balance, resulting in the terminal velocity of the system,
√
α/β. Intuitively this is clear because one could simply

imagine that a sufficiently long distance could somehow be
perceived as a sufficiently long time, and for these limiting
(but fundamentally different) situations, there is a single rep-
resentative velocity that characterizes the dynamics. This has
exactly happened and is an advanced understanding. This is
shown in Figs. 1 and 2, which implicitly indicates the equiv-
alence between Eqs. (8) and (11). In fact, this can be proven
because for the mass point or the center of mass motion,

du

dt
=
du

dx

dx

dt
= u

du

dx
=
d

dx

(
1
2
u2
)
=
∂

∂x

(
1
2
u2
)

(15)

is satisfied.
In Figs. 1 and 2, both velocities (with drag) have the same

limiting values. The flow attains terminal velocity at about
x = 600 m and t = 15 s, but their early behaviors are quite
different. In space, the velocity shows a hyper-increase after
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Figure 3. The influence of the model parameters α and β on the landslide velocity. The color bar shows velocity distributions in meters per
second (m s−1).

the incipient motion. However, the time evolution of velocity
is slow (almost linear) at first, then fast, and finally attains
the steady state,

√
α/β = 60.1 m s−1, which is the common

value for both the solutions.

3.2.2 The velocity magnitudes

A landslide can reach its maximum or terminal velocity after
a relatively short travel distance or time with a value on the
order of 50 m s−1 (Schaerer, 1975; Gubler, 1989; Christen et
al., 2002; Havens et al., 2014). The velocity magnitudes pre-
sented above are quite reasonable for fast to rapid landslides
and debris avalanches (Highland and Bobrowsky, 2008).
The front of the 2017 Piz Cengalo–Bondo landslide already
moved at more than 25 m s−1 20 s after of the rock avalanche
release (Mergili et al., 2020b), and later it moved at about
50 m s−1 (Walter et al., 2020). The 1970 rock–ice avalanche
event in Nevado Huascarán reached a mean velocity of 50–
85 m s−1 at about 20 s, but the maximum velocity in the ini-
tial stage of the movement reached as high as 125 m s−1

(Erismann and Abele, 2001; Evans et al., 2009; Mergili et
al., 2018). The 2002 Kolka glacier rock–ice avalanche accel-
erated with a velocity of about 60–80 m s−1 but also attained
a velocity as high as 100 m s−1, mainly after the incipient
motion (Huggel et al., 2005; Evans et al., 2009).

3.2.3 Accelerating and decelerating motions

Depending on the magnitudes of the involved forces and
whether the initial mass was triggered with a small (includ-
ing zero) velocity or with high velocity, e.g., by strong seis-
mic shaking or when high potential energy is available and
is converted quasi-instantaneously into kinetic energy (the
situation prevails when the vertical height drop of the de-
tachment area is huge and the slope angle of the terrain is
high), Eq. (11) provides fundamentally different but phys-

ically meaningful velocity profiles. Both solutions asymp-
totically approach

√
α/β, which is the lead magnitude in

Eq. (11). For notational convenience, we write Sn(α,β)=
√
α/β, which has the dimension of velocity, and

√
α/β is

called the separation number (velocity) as it separates accel-
erating and decelerating regimes. Furthermore, Sn includes
all the involved forces in the system and is the function of
the ratio between the mechanically known forces (i) gravity,
friction, lubrication, and surface gradient as well as (ii) the
viscous drag force coefficient. Thus, Sn fully governs the ul-
timate state of the landslide motion. For initial velocity less
than Sn, i.e., u0 < Sn, the landslide velocity increases rapidly
just after its release, then ultimately (after a sufficiently long
time) asymptotically approaches the steady state, Sn (Fig. 2).
This is the accelerating motion. On the other hand, if the
initial velocity was higher than Sn, i.e., u0 > Sn, the land-
slide velocity would decrease rapidly just after its release and
would then ultimately asymptotically approach Sn. This is
the decelerating motion (not shown here).

3.2.4 Velocity described by the space of physical
parameters

We now have two possibilities. First, we can describe
u(t;α,β) as a function of time with α and β as parame-
ters. This corresponds to the velocity profile of the particular
landslide characterized by the geometrical, physical, and me-
chanical parameters α and β as time evolves. This is shown
in Fig. 2. Second, we can investigate the control of the physi-
cal parameters on the landslide motion for a given time. This
is achieved by plotting u(α,β; t) as a function of α and β and
considering time as a parameter. Figure 3 shows the influence
of α and β on the evolution of the velocity for a landslide
motion for a typical time t = 35 s. The parameters α and β
enhance or control the landslide velocity completely differ-
ently. For a set of parameters {α, β}, we can now provide
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an estimate of the landslide velocity. As mentioned earlier,
landslide velocities as high as 125 m s−1 have been reported
in the literature, with their mean and common values in the
range of 60–80 m s−1 for rapid motions. This way, we can
explicitly study the influence of the physical parameters on
the dynamics of the velocity field and also determine their
range of plausible values. This answers the question of how
the two similar-looking but physically differently character-
ized landslides would move. They may behave completely
differently.

3.2.5 A model for viscous drag

There are explicit models for the interfacial drags between
the particles and the fluid (Pudasaini, 2020) in the multi-
phase mixture flow (Pudasaini and Mergili, 2019). However,
there is no clear representation of the viscous drag coefficient
for a landslide, which is the drag between the landslide and
the environment. Often in applications, the drag coefficient
(β = CDV) is prescribed and is later calibrated with numer-
ical simulations to fit the observation or data (Kattel et al.,
2016; Mergili et al., 2020a, b). Here, we explore an oppor-
tunity to investigate how the characteristic landslide velocity
(Eq. 14) offers a possibility to define the drag coefficient.
Equation (14) can be written as

β =
α

u2
max

, (16)

where umax represents the maximum possible velocity dur-
ing the motion as obtained from the (long-time) steady-state
behavior of the landslide. Equation (16) provides a clear and
novel definition (representation) of the viscous drag in mass
movement (flow) as the ratio of the applied forces to the
square of the steady-state (or a maximum possible) veloc-
ity the system can attain. With the representative mass m,
Eq. (16) can be written as

β =

1
2mα

1
2mu

2
max

. (17)

Equivalently, β is the ratio between one-half of the “system
force”, 1

2mα (the driving force), and the (maximum) kinetic
energy, 1

2mu
2
max, of the landslide. With the knowledge of the

relevant maximum kinetic energy of the landslide (Körner,
1980), the model (Eq. 17) for the drag can be closed.

3.2.6 Landslide motion down the entire slope

Furthermore, we note that following the classical method by
Voellmy (Voellmy, 1955) and extensions by Salm (1966) and
McClung (1983), the velocity models in Eqs. (8) and (11)
can be used for multiple slope segments to describe the ac-
celerating and decelerating motions as well as the landslide
run-out. These are also called the release, track, and run-
out segments of the landslide or avalanche (Gubler, 1989).

However, for the gentle slope, or the run-out, the frictional
force may dominate gravity. In this situation, the sign of α in
Eq. (5) changes. Then, all the solutions derived above must
be thoroughly revisited with the initial condition for veloc-
ity obtained from the lower end of the upstream segment.
This way, we can apply the model (Eq. 5) to analytically de-
scribe the landslide motion for the entire slope from its re-
lease through the track and the run-out, as well as to calculate
the total travel distance. These methods can also be applied
to the general solutions derived in Sects. 4 and 5.

We mention that, for two-dimensional cycloidal or
parabolic tracks, Gauer (2018) presented analytical velocities
for the mass block motions with simple dry Coulomb or con-
stant energy dissipation along the track. For such idealized
path geometries he found an important relationship: the max-
imum front velocity, Umax, of major snow avalanches scales
with the total drop height of the track,Hsc:Umax ∼

√
gHsc/2,

where g is the gravity constant. Within its scope, this simple
relationship may be applied to estimate the maximum veloc-
ity in Eq. (17).

4 The landslide velocity: general solution – I

For shallow motion the velocity may change locally, but the
change in the landslide geometry may be parameterized. In
such a situation, the force produced by the free-surface pres-
sure gradient can be estimated. A particular situation is the
moving slab for which hg = 0; otherwise, hg 6= 0. This justi-
fies the physical significance of Eq. (5).

The Lagrangian description of a landslide motion is eas-
ier. However, the Eulerian description provides a better and
more detailed picture as it also includes the local deformation
due to the velocity gradient. So, here we consider the model
equation (Eq. 5). Without reduction, conceptually, this can be
viewed as an inviscid, nonhomogeneous, dissipative Burg-
ers’ equation with a quadratic source of system forces, and
it includes both the time and space dependencies of u. Exact
analytical solutions for Eq. (5) can still be constructed, but
in more sophisticated forms, and are very demanding mathe-
matically. For notational convenience, we rewrite Eq. (5) as

∂u

∂t
+ g(u)

∂u

∂x
= f (u), (18)

where g(u)= u and f (u)= α−βu2 correspond to our model
(Eq. 5). Here, g and f are sufficiently smooth functions
of u, the landslide velocity. We construct an exact analytical
solution to the generic model (Eq. 18). For this, first we state
the following theorem from Nadjafikhah (2009).

Theorem 4.1: Let f and g be invertible real-valued
functions of real variables; f is away from zero everywhere,
φ(u)=

∫ 1
f (u)du is invertible, and l(u)=

∫
(g(φ−1(u)))du.

Then, x = l(φ(u))+F [t −φ(u)] is the solution of Eq. (18),

Earth Surf. Dynam., 10, 165–189, 2022 https://doi.org/10.5194/esurf-10-165-2022



S. P. Pudasaini and M. Krautblatter: The landslide velocity 173

where F is an arbitrary real-valued smooth function of
t −φ(u).

For our problem (Eq. 5), we have constructed the ex-
act analytical solution (in Sect. 4.1), and it reads as
(solution D)

x =
1
β

ln
[
cosh

(√
αβφ(u)

)]
+F [t −φ(u)];

φ(u)=
1
2

1
√
αβ

ln
[√

α/β + u
√
α/β − u

]
, (19)

describing the temporal and spatial evolution of the landslide
velocity. It is important to note that in Eq. (19), the major
role is played by the function φ that contains all the forces
of the system. Furthermore, the function F includes the time
dependency of the solution. The amazing fact with the so-
lution (Eq. 19) is that any smooth function F with its argu-
ment [t−φ(u)] is a valid solution of the model equation. This
means that different landslides may be described by different
F functions. Alternatively, a class of landslides might be rep-
resented by a particular function F . This is substantial.

4.1 Derivation of the solution to the general model
equation

Here, we present the detailed derivation of the analytical so-
lution (Eq. 19) to the landslide velocity equation (Eq. 5). We
derive the functions φ, φ−1, l, and loφ that are involved in
Theorem 4.1. The first function φ is given by

φ(u)=
∫

1
f (u)

du=

∫
1

α−βu2 du

=
1

2
√
αβ

ln
[√

α/β + u
√
α/β − u

]
. (20)

With the substitution τ = φ(u) (which implies u= φ−1(τ )),
we obtain

φ−1(τ )=
√
α

β

[
exp(2

√
αβτ )− 1

exp
(
2
√
αβτ

)
+ 1

]
=

√
α

β
tanh(

√
αβτ ). (21)

So, now the second function φ−1 can be written in terms
of u. However, we must be consistent with the physical di-
mensions of the involved variables and functions. The quan-
tities u,

√
αβ,
√
α/β, and τ have dimensions of m s−1, s−1,

m s−1, and s. Thus, for dimensional consistency, the follow-
ing mapping introduces a new multiplier λ with the dimen-
sion of 1 /m s−2. Therefore, we have

φ−1(u)=
√
α

β
tanh

(√
λαβu

)
. (22)

With this, the third function l(u) yields

l(u)=
∫
g
(
φ−1(u)

)
du=

∫
φ−1(u)du

=

√
α

β

∫
tanh

(√
λαβu

)
du=

1
λβ

ln
[
cosh

(
λ
√
αβu

)]
. (23)

The fourth function l(φ(u))= (loφ)(u) is instantly achieved:

l(φ(u))=
(χ
λ

) 1
β

ln
[
cosh

(
(ξλ)

√
αβφ(u)

)]
, (24)

where, as before, the multipliers χ and ξ emerge due to the
transformation, and for dimensional consistency, they have
the dimensions of 1 / (m s−2) and m s−2, respectively. The
nice thing about the groupings (χ/λ) and (ξλ) is that they
are now dimensionless and equal to unity.

Utilizing these functions in Theorem 4.1, we finally con-
structed the exact analytical solution (Eq. 19).

4.2 Recovering the mass point motion

The amazing fact is that the newly constructed general ana-
lytical solution (Eq. 19) is strong and includes both the mass
point solutions for velocity (Eq. 11) and the position (Eq. 13).
For this, consider a vacuum solution F (0)≡ 0, which im-
plies t = φ(u). Then, with the functional relation of φ(u) in
Eq. (19), we obtain

u=

√
α

β
tanh

[√
αβt

]
. (25)

Up to the constant of integration parameters (with u0 = 0 at
t0 = 0), Eq. (25) is Eq. (11). So, the first assertion is proved.
Second, using F (0)≡ 0 and φ(u)= t in Eq. (19) immedi-
ately yields

x =
1
β

ln
[
cosh

(√
αβt

)]
. (26)

Again, up to the constant of integration parameters (with
x0 = 0 and u0 = 0 at t0 = 0), Eq. (26) is Eq. (13). This proves
the second assertion.

Moreover, we mention that Eqs. (25) and (26) can also
be obtained formally. This proves that the conditions used
on F are legitimate. To see this, we differentiate Eq. (19)
with respect to t to yield

u=
dx

dt
=

√
α

β
tanh

[√
αβφ(u)

] dφ
dt
+F ′ [t −φ(u)]

(
1−

dφ

dt

)
.

(27)

But, differentiating φ in Eq. (19) with respect to t and em-
ploying Eq. (10), we obtain dφ/dt = 1, or φ = t . Now, by
substituting these in Eqs. (27) and (19) we respectively re-
cover Eqs. (25) and (26).

However, we note that F in Eq. (19) is a general func-
tion. So, Eq. (19) provides a wide spectrum of analytical so-
lutions for the landslide velocity as a function of time and
space much wider than Eqs. (11) and (13).

4.3 Some particular exact solutions

Here, we present some interesting particular exact solutions
of Eq. (19) in the limit as β→ 0. For this purpose, first we
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Figure 4. Velocity distribution given by Eq. (34).

consider Eq. (5) with β→ 0 and introduce the new variables
t̃ = αt and x̃ = αx. Then, Eq. (5) can be written as

∂u

∂t̃
+ u

∂u

∂x̃
= 1. (28)

We apply Theorem 4.1 to Eq. (28). So, f (u)= 1 implies
φ(u)= u, l(u)= u2/2, and l(φ(u))= u2/2. Following the
procedure as for Eq. (19), we obtain the solution to Eq. (28)
as x̃ = u2

2 +F (t̃ − u). However, the direct application of
φ(u)= u in Eq. (19) leads to the solution (that is more com-
plex in its form) x̃ = 1

β
ln[cosh(

√
βu)] +F (t̃ − u). Then, in

the limit, we must have

lim
β→0

1
β

ln
[
cosh

(√
βu
)]
=
u2

2
. (29)

This is an important mathematical identity we obtained as
a direct consequence of Theorem 4.1 and Eq. (19). Further-
more, the identity (Eq. 29) when applied to Eq. (26) implies

lim
β→0

x = lim
β→0

1
β

ln
[
cosh

(√
αβt

)]
= lim
β→0

1
β

ln
[
cosh

{√
β
(√
αt
)}]
=

1
2
αt2. (30)

Thus, x = 1
2αt

2, which is the travel distance in time when the
viscous drag is absent.

Moreover, with the definition of x̃, for the particular choice
of F ≡ 0, x̃ = u2

2 +F (t̃−u) results in u(x;α)=
√

2αx, which
is Eq. (7). Furthermore, with the choice of x̃ = 0 and F =
t̃ −u, we obtain u= 1−

√
1− 2αt , which for small t can be

approximated as u≈ αt . But, in the limit as β→ 0, Eq. (11)
brings about u= αt , which is valid for all t values. Thus,
Eq. (19) generalizes both solutions in Eqs. (7) and (11) in
numerous ways.

4.4 Reduction to the classical Burgers’ equation

Interestingly, by directly taking the limit as β→ 0, from
Eq. (19) we obtain

x =
u2

2α
+F

(
t −

u

α

)
, (31)

which can be written as

u2
+ 2αF

(
t −

u

α

)
− 2αx = 0. (32)

Importantly, for any choice of the function F , Eq. (32) satis-
fies

∂u

∂t
+ u

∂u

∂x
= α, (33)

which reduces to the classical inviscid Burgers’ equation
when α→ 0.

4.5 Some explicit expressions for u in Eq. (19)

For a properly selected function F , Eq. (19) can be solved
exactly for u. For example, consider a constant F , F =3.
Then, an explicit exact solution is obtained as

u=

√
α

β
tanh

[
1
2

exp
{

2cosh−1 (exp(β(x−3)))
}]
. (34)

Figure 4 shows the velocity distribution given by Eq. (34)
with u≈ 28 m s−1 at x = 0 and 3= 0, which reaches the
steady state at about x = 150 m; this is faster than the solu-
tion given by Eq. (8) in Fig. 1. However, other more general
solutions could be found by considering different F func-
tions in Eq. (19).

For example, with F = 1
β

ln[ccosh{
√
αβ(t −φ(u))}],

where c is a constant, Eq. (19) can be solved explicitly for u
in terms of x and t :
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Figure 5. Evolution of the velocity field along the slope as given by Eq. (35) for general velocity against the mass point (or the center of
mass) velocity corresponding to Eq. (8).

Figure 6. Time evolution of the velocity field as given by Eq. (35).

u=

√
α

β
tanh

[
1
2

{
cosh−1

(
2
c

exp(βx)− cosh
(√
αβ t

))
+
√
αβt

}]
. (35)

The velocity profile along the slope as given by Eq. (35) is
presented in Fig. 5 for t = 1 m s−1 and c = 1. This solution
is quite different to that in Fig. 1 produced by Eq. (8). From
the dynamical perspective, the solution (Eq. 35) is better than
the mass point solution (Eq. 8). The important observation is
that the solution given by Eq. (8) substantially overestimates
the legitimate more general solution (Eq. 35) that includes
both the local time and space variation of the velocity field.
The lower velocity with Eq. (35) corresponds to the energy
consumption due to the deformation associated with the ve-

locity gradient ∂u/∂x in Eq. (5). This will be discussed in
more detail in Sect. 4.6 and 4.7.

Furthermore, Fig. 6 presents the time evolution of the ve-
locity field given by Eq. (35) for x = 25 m and c =−2. This
corresponds to the decelerating motion down the slope that
starts with a very high velocity and finally asymptotically ap-
proaches the steady-state velocity.

4.6 Description of the general velocity

A crucial aspect of a complex analytical solution is its proper
interpretation. The general solution (Eq. 19) can be plot-
ted as a function of x and t . For the purpose of compar-
ing the results with those derived previously, we select F as
F = [Fk(t−φ(u))]pw+Fc with parameter values Fk = 5000,
Fc =−500, and pw = 1/2. Furthermore, x is a parameter
while plotting the velocity as a function of t . In these sit-
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Figure 7. The velocity profiles for a landslide with the mass point motion as given by Eq. (11) and the motion including the internal
deformation as given by the general solution (Eq. 19).

uations, in order to obtain a physically plausible solution,
x0 =−600 is selected. To match the origin of the mass point
solution, in plotting, the time has been shifted by −2. Fig-
ure 7 depicts the two solutions given by Eq. (11) for the
mass point motion and the general solution given by Eq. (19)
that also includes the internal deformation associated with
u∂u/∂x in Eq. (5). They behave essentially differently right
after the mass release. The mass point model substantially
overestimates landslide velocity derived by the more realis-
tic general model. However, the reduced dimensional models
and solutions considered here may give upper bounds to re-
ality because they do not account for the lateral spreading of
the landslide mass. Such problems can only be solved com-
prehensively by considering the numerical simulations on a
full three-dimensional digital terrain model (Mergili et al.,
2020a, b; Shugar et al., 2021) and employing the full dy-
namical mass flow model equations (Pudasaini and Mergili,
2019) without constraining the lateral spreading.

4.7 A fundamentally new understanding

The new general solution (Eq. 19) and its plot in Fig. 7 pro-
vide a fundamentally new aspect in our understanding of
landslide velocity. The physics behind the substantially, but
legitimately, reduced velocity provided by the general veloc-
ity (Eq. 19) compared to the mass point velocity (Eq. 11)
are revealed here for the first time. The gap between the two
solutions increases steadily until a substantially large time
(here about t = 20 s); then the gap is reduced slowly. This
is so because after t = 20 s the mass point velocity is close
to its steady value (about 60.1 m s−1). In the meantime, af-
ter t = 20 s, the general velocity continues to increase but
slowly, and after a long time, it also tends to approach the
steady state. This substantially lower velocity in the general
solution is realistic. Its mechanism can be explained. It be-

comes clear by analyzing the form of the model equation
(Eq. 5). For ease of analysis, we assume accelerating flow
down the slope. For such a situation, both u and ∂u/∂x are
positive, and thus u∂u/∂x > 0. The model (Eq. 5) can also
be written as

∂u

∂t
=

(
α−βu2

)
− u

∂u

∂x
. (36)

Then, from the perspective of the time evolution of u, the
last term on the right-hand side can be interpreted as a neg-
ative force additional to the system (Eq. 10) describing the
mass point motion. This is responsible for the substantially
reduced velocity profile given by Eq. (19) compared to that
given by Eq. (11). The lower velocity in Eq. (19) can be
perceived as the outcome of the energy consumed in the de-
formation of the landslide associated with the spatial veloc-
ity gradient that can also be inferred by the negative force
attached with −u∂u/∂x in Eq. (36). Moreover, u∂u/∂x in
Eq. (5) can be viewed as the inertial term of the system
(Bertini et al., 1994). However, after a sufficiently long time
the drag is dominant, resulting in the decreased value of
∂u/∂x. Then, the effect of this negative force is reduced.
Consequently, the difference between the mass point solu-
tion and the general solution decreases. However, these state-
ments must be further scrutinized.

5 The landslide velocity: general solution – II

Below, we have constructed a further exact analytical solu-
tion to our velocity equation based on the method of Monte-
cinos (2015). Consider the model (Eq. 5) and assign an initial
condition:

∂u

∂t
+ u

∂u

∂x
= α−βu2, u(x,0)= s0(x). (37)
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This is a nonlinear advective–dissipative system and can
be perceived as an inviscid, dissipative, nonhomogeneous
Burgers’ equation. First, we note that H (x) is a primitive of
a function h(x) if dH (x)

dx
= h(x). Then, we summarize the

Montecinos (2015) solution method in a theorem.

Theorem 5.1: Let 1
f (u) be an integrable function. Then, there

exists a function E(t, s0(y)) with its primitive F(t, s0(y))
such that the initial value problem,

∂u

∂t
+ u

∂u

∂x
= f (u), u(x,0)= s0(x), (38)

has the exact solution u(x, t)= E(t, s0(y)), where y satisfies
x = y+F(t, s0(y)).

Following Theorem 5.1, we obtain (in Sect. 5.1) the
exact analytical solution (solution E) for Eq. (37):

u(x, t)=
√
α

β
tanh

[√
αβt + tanh−1

{√
β

α
s0(y)

}]
, (39)

where y = y(x, t) is given by

x = y+
1
β

ln

[
cosh

{√
αβt + tanh−1

{√
β

α
s0(y)

}}]

−
1
β

ln

[
cosh

{
tanh−1

{√
β

α
s0(y)

}}]
, (40)

and s0(x)= u(x,0) provides the functional relation for s0(y).
In contrast to Eq. (19), the system in Eqs. (39)–(40) is the
direct generalization of the mass point solutions given by
Eqs. (11) and (13). This is an advantage.

The solution strategy is as follows: use the definition
of s0(y) in Eq. (40). Then, solve for y. Go back to the defini-
tion of s0(y) and put y = y(x, t) in s0(y). This s0(y) is now a
function of x and t . Finally, put s0(y)= f (x, t) in Eq. (39) to
obtain the required general solution for u(x, t). In principle,
the system (Eqs. 39 and 40) may be solved explicitly for a
given initial condition. One of the main problems in solving
Eqs. (39) and (40) lies in inverting Eq. (40) to acquire y(x, t).
Moreover, we note that, generally, Eqs. (19) and (39)–(40)
may provide different solutions.

5.1 Derivation of the solution to the general model
equation

The solution method involves some sophisticated mathemat-
ical procedures. However, here we present a compact but
quick solution description to our problem. The equivalent or-
dinary differential equation to the partial differential equation
system (Eq. 37) is

dû

dt
= α−βû2, û(0)= s(0), (41)

which has the solution

û(t)= E(t, s(0))=
√
α

β
tanh

[√
αβt + tanh−1

{√
β

α
s(0)

}]
. (42)

Consider a curve x in the x–t plane that satisfies the ordinary
differential equation

dx

dt
= E (t, s0(y))

=

√
α

β
tanh

[√
αβt + tanh−1

{√
β

α
s0(y)

}]
, x(0)= y. (43)

Solving the system (Eq. 43), we obtain

x = y+F (t, s0(y))

= y+
1
β

ln

[
cosh

{√
αβt + tanh−1

{√
β

α
s0(y)

}}]

−
1
β

ln

[
cosh

{
tanh−1

{√
β

α
s0(y)

}}]
. (44)

So, the exact solution to the problem (Eq. 37) is given by

u(x, t)= E (t, s0(y))

=

√
α

β
tanh

[√
αβt + tanh−1

{√
β

α
s0(y)

}]
, (45)

where y satisfies Eq. (44).

5.2 Recovering the mass point motion

It is interesting to observe the structure of the solutions given
by Eqs. (39) and (40). For a constant initial condition, e.g.,
s0(x)= λ0, s0(y)= λ0, Eqs. (39) and (40) are decoupled.
Then, Eq. (39) reduces to

u(x, t)=
√
α

β
tanh

[√
αβt + tanh−1

(√
β

α
λ0

)]
. (46)

For t = 0, u(x,0)= u0(x)= λ0, which is the initial condi-
tion. Furthermore, Eq. (40) takes the form

x = x0+
1
β

ln

[
cosh

{√
αβt + tanh−1

(√
β

α
λ0

)}]

−
1
β

ln

[
cosh

{
tanh−1

(√
β

α
λ0

)}]
, (47)

from which we see that for t = 0, x = y = x0, which is the
initial position. With this, we observe that Eqs. (46) and (47)
are the mass point solutions in Eqs. (11) and (13), respec-
tively.

https://doi.org/10.5194/esurf-10-165-2022 Earth Surf. Dynam., 10, 165–189, 2022



178 S. P. Pudasaini and M. Krautblatter: The landslide velocity

Figure 8. The velocity profile down a slope as a function of position for a landslide given by Eqs. (39) and (40) reduced to the steady state
(Eq. 48) against the steady-state solution with viscous drag given by Eq. (8). They match perfectly.

5.3 A particular solution

For the choice of the initial condition s0(x)=√
α
β

tanh
[
cosh−1

{exp(βx)}
]
, combining Eqs. (39) and (40)

leads to

u(x, t)=
√
α

β
tanh

[
cosh−1

{exp(βx)}
]
, (48)

which, surprisingly, is the same as the initial condition. How-
ever, we can now legitimately compare Eq. (48) with the pre-
viously obtained solution (Eq. 8), which is the steady-state
motion with viscous drag. These two solutions are presented
in Fig. 8. The very interesting fact is that Eqs. (8) and (48)
turned out to be the same. For a real-valued parameter β and
a real variable x, this reveals an important mathematically
identity:

tanh
[
cosh−1

{exp(βx)}
]
=
√

1− exp(−2βx). (49)

This means the very complex function on the left-hand side
can be replaced by the much simpler function on the right-
hand side. Moreover, taking the limit as β→ 0 in Eq. (48)
and comparing it with Eq. (7), we obtain another functional
identity:

lim
β→0

1
√
β

tanh
[
cosh−1

{exp(βx)}
]
=
√

2x. (50)

These identities have mathematical significance.

5.4 Time marching general solution

Any initial condition can be applied to the solution system
(Eqs. 39 and 40). For the purpose of demonstrating the func-
tionality of this system, here we consider two initial con-
ditions: s0(x)= x0.50 and s0(x)= x0.65. The corresponding

results are presented in Fig. 9. This figure clearly shows
time marching of the landslide motion that also stretches
as it slides down. Such deformation of the landslide stems
from the term u∂u/∂x and the applied forces α−βu2 in
our primary model (Eq. 5). We will elaborate on this later.
This proves our hypothesis on the importance of the nonlin-
ear advection and external forcing for the deformation and
motion of the landslide. The mechanism and dynamics of
the advection, stretching, and approaching the steady state
can be explained with reference to the general solution. For
this, consider panel b with initial condition s0(x)= x0.65. At
t = 0.0 s, Eq. (40) implies that y = x; then from Eq. (39),
u(x, t)= s0(x), which is the initial condition. Such a veloc-
ity field can take place in a relatively early stage of the de-
veloped motion of large natural events (Erismann and Abele,
2001; Huggel et al., 2005; Evans et al., 2009; Mergili et al.,
2018). This is represented by the t = 0.0 s curve. For the next
time, say t = 2.0 s, the spatial domain of u expands and shifts
to the right as defined by the rule (Eq. 40). It has three effects
in Eq. (39). First, due to the shift of the spatial domain, the
velocity field u is relocated to the right (downstream). Sec-
ond, because of the increased t value and the spatial term
associated with tanh−1, the velocity field is elevated. Third,
as the tanh function defines the maximum value of u (about
60.1 m s−1), the velocity field is controlled (somehow ap-
pears to be rotated). These dynamics also apply for t > 2.0 s.
These jointly produce beautiful spatiotemporal patterns in
Fig. 9. Since the maximum of the initial velocity was already
close to the steady-state value (the right end of the curve),
the front of the velocity field is automatically and strongly
controlled, limiting its value to 60.1 m s−1. So, although the
rear velocity increases rapidly, the front velocity remains al-
most unchanged. After a sufficiently long time, t ≥ 15 s, the
rear velocity also approaches the steady-steady value. Then,
the entire landslide moves downslope with virtually constant
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Figure 9. Time evolution of velocity profiles of propagating and stretching landslides down a slope and as functions of position including
the internal deformations as given by the general solution in Eqs. (39) and (40) of Eq. (5). The profiles evolve based on the initial conditions
s0(x)= x0.50 (a, t = 0.0 s) and s0(x)= x0.65 (b, t = 0.0 s), respectively.

steady-state velocity, without any substantial stretching. We
can similarly describe the dynamics for Fig. 9a. However,
these two panels reveal an important fact: the initial condi-
tion plays an important role in determining and controlling
the landslide dynamics.

5.5 Landslide stretching

The stretching (or deformation) of the landslide propagating
down the slope depends on the evolution of its front (xf) and
rear (xr) positions with maximum and minimum speeds, re-
spectively. This is shown in Fig. 10 corresponding to the ini-
tial condition s0(x)= x0.65 in Fig. 9. It is observed that the
rear position evolves strongly nonlinearly, whereas the front
position advances only weakly nonlinearly.

In order to better understand the rate of stretching of the
landslide, in Fig. 11 we also plot the difference between

the front and rear positions as a function of time. It shows
the stretching (rate) of the rapidly deforming landslide. The
stretching dynamic is determined by the front and rear po-
sitions of the landslide in time, as shown in Fig. 10. In the
early stages, the stretching increases rapidly. However, in
later times (about t ≥ 15 s) it increases only slowly, and af-
ter a sufficiently long time, (the rate of) stretching vanishes
as the landslide has already been fully stretched. This can be
understood because after a sufficiently long time, the motion
is in steady state. Nevertheless, the ways the two solutions
reach the steady state are different. The two panels in Fig. 9
also clearly indicate that the stretching (rate) depends on the
initial condition.
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Figure 10. Time evolution of the front and rear positions of the landslide as it moves down the slope including the internal deformation
given by the general solution in Eqs. (39) and (40) of Eq. (5), corresponding to the initial condition s0(x)= x0.65 in Fig. 9.

Figure 11. Time stretching of the landslide down the slope including the internal deformation given by the general solution in Eqs. (39)
and (40) of Eq. (5), corresponding to the initial condition s0(x)= x0.65 in Fig. 9.

5.6 Describing the dynamics

The dynamics observed in Figs. 9 and 11 can be described
with respect to the general model in Eq. (5) or (37) and its
solution given by Eqs. (39) and (40). The nice thing about
Eq. (39) is that it can be analyzed in three different ways:
with respect to the first or second or both terms on the right-
hand side. If we disregard the first term involving time, then
we explicitly see the effect of the second term that is respon-
sible for the spatial variation of u for each time employed in
Eq. (40). This results in the shift of the solution for u to the
right, and in the meantime, the solution stretches but with-
out changing the possible maximum value of u (not shown).
Stretching continues for higher times; however, for a suf-
ficiently long time, it remains virtually unchanged. On the
other hand, if we consider both the first and second terms on

the right-hand side of Eq. (39) but use the initial velocity dis-
tribution only for a very small x domain, say [0, 1], then we
effectively obtain the mass point solutions given in Figs. 1
and 2 corresponding to Eqs. (8) and (11), respectively, for
the spatial and time evolutions of u. This is so because now
the very small initial domain for x essentially defines the ve-
locity field as if it was for a center of mass motion. Then,
as time elapses, the domain shifts to the right and the veloc-
ity increases. Now, plotting the velocity field as a function
of space and time recovers the solutions in Figs. 1 and 2. In
fact, if we collect all the minimum values of u (the left end
points) in Fig. 9b and plot them in space and time, we ac-
quire both the results in Figs. 1 and 2. These are effectively
the mass point solutions for the spatial and time variation of
the velocity field because these results only focus on the left
end values of u, akin to the mass point motion. This means
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Figure 12. Spatial (a) and temporal (b) transportations of the initial velocity (u= 0) of the landslide down the slope by the general solution
system (Eqs. 39 and 40) as indicated by the star markings for times t = 0.0 s, with 2.0 s increments. These solutions exactly fit the space and
time evolutions of the velocity fields (curves) for the mass point motions given by Eqs. (8) and (11).

Eq. (40) together with Eq. (39) is responsible for the dynam-
ics presented in Figs. 9–11 corresponding to the term u∂u/∂x

and α−βu2 in the general model (Eqs. 5 or 37). So, the dy-
namics are specially architectured by the advection u∂u/∂x
and controlled by the system forcing α−βu2 through the
model parameters α and β. This will be discussed in more
detail in Sect. 5.7–5.9. This reveals the fact that the shift-
ing, stretching, and lifting of the velocity field stem from the
term u∂u/∂x in Eq. (37). After a long time, as drag strongly
dominates the other system forces, the velocity approaches
the steady state, the velocity gradient practically vanishes,
and thus the stretching ceases. Then, the landslide just moves
down the slope at a constant velocity without any further dy-
namical complication.

5.7 Rolling out the initial velocity

It is compelling to see how the solution system (Eqs. 39
and 40) rolls out an initially constant velocity across spe-
cific curves. For this, consider an initial velocity s0(x)= 0 in
a small domain, say [0, 3], and take a point in it. Then, gen-
erate solutions for different times beginning with t = 0.0 s,
with 2.0 s increments. As shown in Fig. 12, the space and
time evolutions of the velocity fields for a mass point motion
given by Eqs. (8) and (11) have been exactly rolled up and
covered by the system (Eqs. 39 and 40) by transporting the
initial velocity along these curves (indicated by the star sym-
bols). As explained earlier, the mechanism is such that, in
time, Eq. (40) shifts the solution point (domain) to the right
and Eq. (39) uplifts the velocity exactly lying on the mass
point velocity curves designed by Eqs. (8) and (11). So, the
system (Eqs. 39 and 40) generalizes the mass point motion
in many different ways.
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Figure 13. The breaking wave and folding as a landslide propagates down a slope. Panel (a) has lower drag, while panel (b) has higher drag,
showing that drag strongly controls the wave breaking and folding as well as the magnitude of the landslide velocity.

5.8 Breaking wave and folding

Next, we show how the new model (Eq. 5) and its solu-
tion system (Eqs. 39 and 40) can mold the breaking wave
in mass transport and describe the folding of a landslide. For
this, consider a sufficiently smooth initial velocity distribu-
tion given by s0(x)= 5exp(−x2/50). Such a distribution can
be realized; e.g., as the landslide starts to move, its center
might have been moving at the maximum initial velocity due
to some localized strength weakening mechanism (examples
include liquefaction, frictional strength loss, blasting, seis-
mic shaking), and the strength weakening diminishes quickly
away from the center. This later leads to a highly stretchable
landslide from the center to the back, while from the center to
the front, the landslide contracts strongly. The time evolution
of the solution is presented in Fig. 13. Figure 13a is for the
usual drag as before (β = 0.0019), while Fig. 13b has higher
drag (β = 0.019). The drag strongly controls the wave break-

ing and folding, as well as the magnitude of the landslide ve-
locity. Here, we focus on Fig. 13a, but similar analysis also
holds for Fig. 13b.

Wave breaking and folding are often-observed important
dynamical aspects in mass transport and formation of geo-
logical structures. Figure 13 reveals thrilling dynamics. The
most fascinating feature is the velocity wave breaking and
how this leads to the emergence of folding of the landslide.
This can be explained with respect to the mechanism associ-
ated with the solution system (Eqs. 39 and 40). As u∂u/∂x
is positive to the left and negative to the right of the max-
imum initial velocity, the motion to the left of the maxi-
mum initial velocity overtakes the velocity to the right of
the maximum position. As the position of the maximum ve-
locity accelerates downslope with the fastest speed, after a
sufficiently long time, a kink around the front of the ve-
locity wave develops, here after t = 2 s. This marks the ve-
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Figure 14. Recovering the Burgers’ shock formation and breaking of the wave by the solution system (Eqs. 39 and 40) of the new model
(Eq. 5) in the limit of the vanishing external forcing, i.e., α→ 0, β→ 0.

locity wave breaking (shock wave formation) and the be-
ginning of the folding. However, the rear stretches contin-
uously. Although mathematically folding may refer to a sin-
gularity due to a multi-valued function, here we explain the
folding dynamics as a phenomenon that can appear in na-
ture. In time, the folding intensifies, and the folding length
increases, but the folding gap decreases. After a long time,
the folding gap virtually vanishes and the landslide moves
downslope at the steady-state velocity with a perfect fold in
the frontal part (not shown), while in the back, it maintains
a single large stretched layer. This happened collectively as
the system (Eqs. 39 and 40) simultaneously introduced three
components of the landslide dynamics: downslope propaga-
tion, velocity uplift, and breaking or folding in the frontal
part while stretching in the rear. This physically and mathe-
matically proves that nonuniform motion (with its maximum
somewhere interior to the landslide) is the basic requirement
for the development of the breaking wave and the emergence
of landslide folding.

5.9 Recovering Burgers’ model

As the external forcing vanishes, i.e., as α→ 0 and β→ 0,
the landslide velocity equation (Eq. 5) reduces to the classi-
cal inviscid Burgers’ equation. Then, for α→ 0 and β→ 0,
one would expect that the general solution (Eqs. 39 and 40)
should also reduce to the formation of the shock wave and
wave breaking generated by the inviscid Burgers’ equation.
In fact, as shown in Fig. 14, this has exactly happened. For
this, the solution domain remains fixed, and the solutions are
not uplifted. This proves that Burgers’ equation is a special
case of our model (Eq. 5).

5.10 The viscous drag effect

It is important to understand the dynamic control of the vis-
cous drag on the landslide motion. For this, we set α→ 0 but
increased the value of the viscous drag parameter by 1 and
2 orders of magnitude. The results are shown in Fig. 15. In
connection to Fig. 14, there are two important observations.
First, the translation and stretching of the domain are solely
dependent on the net driving force α, and when it is set to
zero, the domain remains fixed. Second, the viscous drag pa-
rameter β effectively controls the magnitude of the velocity
field and the wave breaking. Depending on the magnitude of
the viscous drag coefficient, the generation of the shock wave
and the wave breaking can be dampened (Fig. 15a) or fully
controlled (Fig. 15b). Figure 15b further reveals that with a
properly selected viscous drag coefficient, the new model can
describe the deposition process of the mass transport and fi-
nally brings it to a standstill. In contrast to the classical in-
viscid Burgers’ equation, due to the viscous drag effect, our
model (Eq. 5) is dissipative and can be recognized as a dissi-
pative inviscid Burgers’ equation. However, here the dissipa-
tion is not due to the diffusion but due to the viscous drag.

6 Discussion

Exact analytical solutions of the underlying physical–
mathematical models significantly improve our knowledge
of the basic mechanism of the problem. On the one hand,
such solutions disclose many new and essential physics and
may thus find applications in environmental and engineering
mass transports down natural slopes or industrial channels.
The reduced and problem-specific solutions provide impor-
tant insights into the full behavior of the complex landslide
system, mainly the landslide motion with nonlinear internal
deformation together with the external forcing. On the other
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Figure 15. The control of the viscous drag on the dynamics of the landslide. The net driving force is set to zero, i.e., α = 0. The viscous drag
has been amplified by 1 and 2 orders of magnitudes in panels (a) and (b), showing dampened or complete prevention of shock formation and
wave breaking, respectively.

hand, exact analytical solutions to simplified cases of non-
linear model equations are necessary to calibrate numerical
simulations (Chalfen and Niemiec, 1986; Pudasaini, 2011,
2016; Ghosh Hajra et al., 2018). For this reason, this paper
is mainly concerned about the development of a new general
landslide velocity model and construction of several novel
exact analytical solutions for landslide velocity.

Analytical solutions provide the fastest, cheapest, and
probably the best solution to a problem as measured from
their rigorous nature and representation of the dynamics.
Proper knowledge of the landslide velocity is required in ac-
curately determining the dynamics, travel distance, and enor-
mous destructive impact energy carried by the landslide. The
velocity of a landslide is associated with its internal deforma-
tion (inertia) and the externally applied system forces. The
existing influential analytical landslide velocity models do
not include many important forces and internal deformation.

The classical analytical representation of the landslide ve-
locity appear to be incomplete and restricted from both the
physics and the dynamics point of view. No velocity model
has been presented yet that simultaneously incorporates iner-
tia and the externally applied system forces that play a crucial
role in explaining important aspects of landslide propagation,
motion, and deformation.

We have presented the first-ever physics-based, analyti-
cally constructed, simple but more general landslide veloc-
ity model. There are two main collective model parameters:
the net driving force and drag. By rigorous derivations of the
exact analytical solutions, we showed that incorporation of
the nonlinear advection and external forcing is essential for
the physically correct description of the landslide velocity. In
this regard, we have presented a novel dynamical model for
landslide velocity that precisely explains both the deforma-
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tion and motion by quantifying the effect of nonlinear advec-
tion and the system forces.

Different exact analytical solutions for landslide velocity
constructed in this paper independently support each other.
These physically meaningful solutions can potentially be ap-
plied to calculate the complex nonlinear velocity distribu-
tion of the landslide. Our new results reveal that solutions
to the more general equation for the landslide motion are
widely applicable. The new landslide velocity model and its
advanced exact solutions have made it possible to analyti-
cally study complex landslide dynamics, including nonlinear
propagation, stretching, wave breaking, and folding. More-
over, these results clearly indicate that proper knowledge of
the model parameters α and β is crucial in reliable prediction
of the landslide dynamics.

6.1 Advantages of the new model and its solutions

The new model may describe the complex dynamics of many
extended physical and engineering problems appearing in na-
ture, science, and technology – connecting different types
of complex mass movements and deformations. Specifically,
the advantage of the new model equation is that the more
general landslide velocity can now be obtained explicitly and
analytically, which is very useful in solving relevant engi-
neering and applied problems, and it has enormous applica-
tion potential.

There are three distinct situations in modeling the land-
slide motion: (i) the spatial variation of the flow geometry
and velocity can be negligible for which the entire landslide
effectively moves as a mass point without any local defor-
mation. This refers to the classical Voellmy model. (ii) The
geometric deformation of the landslide can be parameterized
or neglected; however, the spatial variation of the velocity
field may play a crucial role in the landslide motion. In this
circumstance, the landslide motion can legitimately be ex-
plained by the full form of the new landslide velocity equa-
tion (Eq. 5). The constructed general solutions in Eqs. (19)
and (39)–(40) of this model have revealed many important
features of dynamically deforming and advecting landslide
motions. (iii) Both the landslide geometry and velocity may
substantially change locally. Then, no assumptions on the
spatial gradient of the geometry and velocity can be made.
For this, only the full set of the basic model equations (Eqs. 1
and 2) can explain the landslide motion. While models and
simulation techniques for situations (i) and (iii) are avail-
able in the literature, situation (ii) is entirely new both phys-
ically and mathematically. It is evident that dynamically sit-
uation (ii) plays an important role, first in making the bridge
between the two limiting solutions and, second, by provid-
ing the most efficient solution. The solutions in Eqs. (19)
and (39)–(40) include the local deformation associated with
the velocity gradient. However, except for parameterization,
Eqs. (19) and (39)–(40) do not explicitly include the geo-
metrical deformation. As long as the spatial change in the

landslide geometry is insignificant, we can use Eqs. (19) or
(39) and (40) to describe the landslide motion. These solu-
tions also include mass point motions and are valid before
fragmentation and/or significant to large geometric deforma-
tions. However, when the geometric deformations are signif-
icant, we must use Eqs. (1) and (2) and solve them numer-
ically with some high-resolution numerical methods (Tai et
al., 2002; Mergili et al., 2017; 2020a, b).

The models in Eq. (19) or Eqs. (39)–(40) and Eqs. (1)–(2)
are amicable and can be directly coupled. Such a coupling
between the geometrically negligibly or slowly deforming
landslide motion described by Eq. (19) or Eqs. (39)–(40) and
the full dynamical solution with any large to catastrophic de-
formations described by Eqs. (1) and (2) is novel. First, this
allows us to consistently couple the negligible or slowly de-
formable landslide with a fast (or rapidly) deformable flow-
type landslide (or debris flow). Second, our method provides
a very efficient simulation due to the instant exact solution
given by Eq. (19) or Eqs. (39) and (40) prior to the large
external geometric deformation that is then linked to the full
model equations (Eqs. 1 and 2). Computational software such
as r.avaflow (Mergili et al., 2017, 2020a, b; Pudasaini and
Mergili, 2019) can substantially benefit from such a coupled
solution method. Third, importantly, this coupling is valid for
single-phase or multi-phase flows because the corresponding
model (Eq. 5) is derived by reducing the multi-phase mass
flow model (Pudasaini and Mergili, 2019).

Burgers’ equation has no external forcing term. The solu-
tion domain remains fixed and does not stretch and propagate
downslope. So, the initial velocity profile deforms and the
wave breaks within the fixed domain. In contrast, our model
(Eq. 5) is fundamentally characterized and explained simul-
taneously by the nonlinear advection u∂u/∂x and external
forcing, α−βu2. The first designs the main dynamic feature
of the wave, while the latter induces rapid downslope propa-
gation, stretching of the wave domain, and quantification of
the wave form and magnitude. These special features of our
model are often-observed phenomena in mass transport and
are freshly revealed here.

6.2 Compatibility, reliability, and generality of the
solutions

Within their scopes and structures, many of the analytical so-
lutions constructed in Sects. 3–5 are similar. This effectively
implies the physical aspects of our general landslide veloc-
ity model (Eq. 5) and also the compatibility and reliability of
all the solutions. The solutions in Eqs. (19) and (39)–(40) re-
cover all the mass point motions given by Eqs. (11) and (13).
From the physical and dynamical point of view, the veloc-
ity profiles given by Eqs. (19) and (39)–(40) as solutions of
the general model for the landslide velocity (Eq. 5) are much
wider and better than those given by Eqs. (11) and (13) as
solutions of the mass point model (Eq. 10).
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Structurally, the solutions presented in Sect. 3 are only
partly new, yet they are physically substantially advanced.
However, in Sects. 4 and 5 we have presented entirely novel
solutions both physically and structurally. From a physical
and mathematically point of view, particularly important is
the form of the general velocity model (Eq. 5). First, it
extends the classical Voellmy mass point model (Voellmy,
1955) by including (i) much wider physical aspects of land-
slide types and motions as well as (ii) the landslide dynamics
associated with the internal deformation as described by the
spatial velocity gradient associated with the advection. Sec-
ond, the model (Eq. 5) is the direct extension of the invis-
cid Burgers’ equation by including a (quadratic) nonlinear
source as a function of the state variable. This source term
contains all the applied forces appearing from the physics
and mechanics of the landslide motion.

Moreover, as viewed from the general structure of the
model (Eq. 5), all the solutions constructed here can be uti-
lized for any physical problems that can be cast and repre-
sented in form (Eq. 5), but independent of the definition of
the model parameters α and β, as well as the state variable u
(Faraoni, 2022).

6.3 Implications

The new model (Eq. 5) and its solutions have broad implica-
tions mathematically, physically, and technically. By deriv-
ing a general landslide velocity model and its various ana-
lytical exact solutions, we made a breakthrough in correctly
determining the velocity of a deformable landslide that is
controlled by several applied forces as it propagates down
the slope. We achieve a novel understanding that the iner-
tia and the forcing terms ultimately regulate the landslide
motion and provide a physically more appropriate analytical
description of landslide velocity, dynamic impact, and inun-
dation. This addresses the long-standing scientific question
of explicit and full analytical representation of the velocity
of deformable landslides. Such a description of the state of
landslide velocity is innovative.

As the analytically obtained values represent the velocity
of natural landslides well, technically, this provides a very
important tool for landslide engineers and practitioners in
quickly, efficiently, and accurately determining landslide ve-
locity. The general solutions presented here reveal an impor-
tant fact: accurate information about the mechanical param-
eters, state of the motion, and initial condition is very im-
portant for the proper description of the landslide motion.
We have extracted some interesting particular exact solutions
from the general solutions. As direct consequences of the
new general solutions, some important and nontrivial math-
ematical identities have been established that replace very
complex expressions by straightforward functions.

7 Summary

While existing analytical landslide velocity models cannot
deal with the internal deformation and mostly fail to inte-
grate a wide spectrum of externally applied forces, we devel-
oped a simple but general analytical model that is capable of
including both of these important aspects. In this paper, we
(i) derived a general landslide velocity model applicable to
different types of landslide motions, (ii) solved it analytically
to obtain several exact solutions as a function of space and
time for landslide motion, and (iii) highlighted the essence
of the new model. The model includes the internal defor-
mation due to nonlinear advection and the external nonlin-
ear forcing consisting of the extensive net driving force and
viscous drag. The model describes a dissipative system and
involves dynamic interactions between the advection and ex-
ternal forcing that control the landslide deformation and mo-
tion. Our model constitutes a unique and new class of non-
linear advective–dissipative system with quadratic external
forcing as a function of state variable, containing all system
forces. The new equation may describe the dynamical state
of many extended physical and engineering problems appear-
ing in nature, science, and technology. There are two crucial
novel aspects: first, it extends the classical Voellmy model
and additionally explains the dynamics of a locally deform-
ing landslide, providing a better and more detailed picture of
the landslide motion. Second, it is a more general formula-
tion but can also be viewed as an extended inviscid, nonho-
mogeneous, dissipative Burgers’ equation by including the
nonlinear source term as a quadratic function of the field
variable. The source term accommodates the mechanics of
an underlying problem through the net driving force and the
dissipative viscous drag.

Due to the nonlinear advection and quadratic forcing, the
new general landslide velocity model poses a great mathe-
matical challenge to derive explicit analytical solutions. Yet,
we constructed several new and general exact analytical solu-
tions in more sophisticated forms. These solutions are strong,
recover all the mass point motions in many different ways,
and provide a much wider spectrum for the landslide veloc-
ity than the classical Voellmy and Burgers’ solutions. The
major role is played by the nonlinear advection and system
forces. The general solutions provide essentially new aspects
in our understanding of landslide velocity. We have also pre-
sented a new model for the viscous drag as the ratio between
one-half of the system force and the relevant kinetic energy.

With the general solution, we revealed that different
classes of landslides can be represented by different solu-
tions under the roof of one velocity model. General solu-
tions allowed us to simulate the progression and stretching
of the landslide. We disclosed the fact that the shifting and
stretching of the velocity field stem from the external forcing
and nonlinear advection. After a long time, as drag strongly
dominates the system forces, the velocity gradient vanishes,
and thus the stretching ceases. Then, the landslide propa-
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gates down the slope just at a constant (steady-state) velocity.
The general solution system can generate complex breaking
waves in advective mass transport and describe the folding
process of a landslide. Such phenomena have been presented
and described mechanically for the first time. The most fas-
cinating feature is the dynamics of the wave breaking and the
emergence of folding. This happens collectively as the solu-
tion system simultaneously introduces three important com-
ponents of the landslide dynamics: downslope propagation
and stretching of the domain, velocity uplift, and breaking or
folding in the frontal part while stretching in the rear. This
physically proves that nonuniform motion is the basic re-
quirement for the development of breaking wave and emer-
gence of the landslide folding. This is a novel understanding.
We disclosed the fact that the translation and stretching of the
domain, as well as lifting of the velocity field, solely depend
on the net driving force. Similarly, the viscous drag fully con-
trols the shock wave generation, wave breaking, and fold-
ing, as well as the magnitude of the landslide velocity. Fur-
thermore, the new model can describe the deposition or the
halting process of the mass transport. As the external forc-
ing vanishes, the general solution automatically reduces to
the classical shock wave generated by the inviscid Burgers’
equation. This proves that the inviscid Burgers’ equation is a
special case of our general model.

The theoretically obtained velocities are close to the often-
observed values in natural events including landslides and
debris avalanches. This indicates the broad application po-
tential of the new landslide velocity model and its exact ana-
lytical solutions in quickly solving engineering and technical
problems as well as in accurately estimating the impact force
that is very important in delineating hazard zones and for the
mitigation of landslide hazards.
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