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This paper presents a new model and discussions about the motion of avalanches from
initiation to run-out over moderately curved and twisted channels of complicated
topography and its numerical simulations. The model is a generalization of a well
established and widely used depth-averaged avalanche model of Savage & Hutter and is
published with all its details in Pudasaini & Hutter (Pudasaini & Hutter 2003 J. Fluid
Mech. 495, 193-208). The intention was to be able to describe the flow of a finite mass of
snow, gravel, debris or mud, down a curved and twisted corrie of nearly arbitrary cross-
sectional profile. The governing equations for the distribution of the avalanche thickness
and the topography-parallel depth-averaged velocity components are a set of hyperbolic
partial differential equations. They are solved for different topographic configurations,
from simple to complex, by applying a high-resolution non-oscillatory central
differencing scheme with total variation diminishing limiter. Here we apply the model
to a channel with circular cross-section and helical talweg that merges into a horizontal
channel which may or may not become flat in cross-section. We show that run-out
position and geometry depend strongly on the curvature and twist of the talweg and
cross-sectional geometry of the channel, and how the topography is shaped close to run-
out zones.

Keywords: rapid granular avalanches; free-surface motion; natural terrains;
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1. Introduction

Natural hazards such as avalanches, debris- and mud-flows as well as landslides
are common natural phenomena to the inhabitants of high-mountain areas.
People and municipal authorities in these areas who have learned to accept their
occasional occurrence and to avoid the damage that accompanies them are
always seeking to minimize such unpleasant and sometimes unavoidable
happenings, causing the death and damage of the life and property of the
people. In the second half of the last century, significant efforts were undertaken
to understand the mechanisms of formation of avalanches at high elevations,
dynamics of the motion along the complicated and non-trivial mountain tracks
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and settlements of such huge and catastrophic events in the flat valleys. Special
attention was paid to the mechanical, dynamical and the geometrical parts of the
problem. Several theories were proposed, ranging from statistical and mass point
models to hydraulic and molecular dynamics formulations including the kinetic
theories. Of the abundant number of papers, we mention Lied & Bakkehgi
(1980), McClung & Lied (1987) and Lied & Toppe (1989) for the statistical
approach, Voellmy (1955), Salm (1966) and Perla et al. (1980) for the mass point
models, Grigoryan & Ostroumov (1977) and Eglit (1983) for the hydraulic
models, Savage (1989) for the molecular dynamics approach and Jenkins (2001)
for a hydraulic model using the kinetic theory. The subject has been reviewed in
parts by Hutter & Rajagopal (1994) and Hutter (1996), and an attempt to list
(almost) all available snow avalanche models was made in the SAME (Snow
Avalanche Modelling, Mapping and Warning in Europe) report (Harbitz 1998).
Complementary information on debris flow and flow from volcanic eruptions is
given by Iverson & Denlinger (2001), Denlinger & Iverson (2001, 2004), Pitman
et al. (2003), Iverson et al. (2004) and Patra et al. (in press). Different numerical
techniques were developed and well implemented, and a number of experiments
both in the laboratory and the field were performed. Here, mention might be
made of Hutter and others (e.g. Hutter 1996), Keller et al. (1998), Iverson &
Denlinger (2001) and Iverson et al. (2004) for laboratory and out-door
experiments and Gubler (1987), Norem et al. (1987) and Zwinger et al. (2003)
for the collection of field data, reviewed for snow by Issler (2003). As for
numerical methods, we mention Denlinger & Iverson (2001, 2004), Tai et al.
(2002), Koschdon & Schéfer (2003), Vollméller (2004) and Patra et al. (in press).
The aim behind these scientific and technical activities is to forecast the
occurrence of avalanches and debris flows and to predict zones of encounters
either on their tracks or down in the valley as they come to settlements. This will
eventually merge into the construction of hazard maps, classifying the regions as
dangerous, less dangerous and danger-free zones. Nevertheless, accidents causing
damage of property and loss of life have regularly occurred in the past and
continue to occur today. This points at the need of research of avalanches and
debris flows at intensified levels, and makes it a topic of permanent public
concern in mountainous regions.

Since avalanches and debris flows in natural terrain are geometrically
complex, their prediction of flow path and deposition, including the design of
defence measures, are difficult and fraught with large errors. To reduce, these and
to restrict them as far as possible to the truly statistical causes, model parts,
which can be based on deterministic prerequisites, ought to be described as
accurately as possible. Such efforts have been the focus in the last few years, and
the above-mentioned literature mirrors this state. By and large, efforts
concentrated on rigorous descriptions of the motion of a finite mass of snow,
soil or debris down a prescribed topography using deterministic classical physics
and its mathematical-numerical exploitation and leaving the statistics to the
uncertainties of the exact prediction, initial and boundary data and the
phenomenological parameters through error-fraught validation procedures.

In this paper, we use a new set of model equations and present discussions
regarding the motion of avalanches from initiation to run-out down mountain
valleys or corries that are curved and twisted. Ideally, the motion ought to be
channelized, however the fission into two channels from a single one is in
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principle thinkable if undoubtedly very complex. The model has been presented
by Pudasaini & Hutter (2003) and only its salient parts will be given here, as our
focus will be on the presentation of numerical results of flows of a finite mass of a
granular material down idealized channels with curvature and torsion and
topographic variations. Cross-sections and talwegs will be varied so as to allow us
to scrutinize the reaction of the moving piles to curvature and torsion effects as
well as variations in the topography close to the run-out zone. Comparison with
laboratory data and application to natural topographies are not yet ready.

The model equations are solved by implementing the non-oscillatory central
(NOC) scheme with total variation diminishing (TVD) limiters (see Nessyahu &
Tadmor 1990; Jiang & Tadmor 1998). These are high-resolution numerical
techniques able to resolve the steep height and velocity gradients and moving
sharp fronts that are often observed in experiments and field events but not
captured by traditional finite-difference schemes. Our numerical technique is
based on Wang et al. (2004) and uses NOC schemes with an optimal limiter. We
performed several numerical tests for avalanching masses down curved and
twisted bed topographies (Pudasaini 2003). Uniformly and non-uniformly curved
and twisted channels as well as channels which incorporate continuous transition
zones merging into the horizontal run-out zones are considered. Channels with
both confined and unconfined transition zones, with constant and variable
inclination angles of the topography, are studied. The results demonstrate a
sensitive reaction of the flow of the granular mass to the variations in curvature,
twist and the topography. In particular, the peculiarities of the quantities in the
transition zone immediately before the entrance of the avalanche into the run-out
region. They demonstrate that not only the run-out distance but also the
sidewise position of the final deposit depend crucially on how the curvature and
twist of the talweg behave individually and together as the avalanche track
enters the run-out zone.

2. Model equations

Before presenting the model equations proposed by Pudasaini & Hutter
(PH; 2003), we briefly discuss the physically justified and realistic assumptions
made in the development of the model equations. Savage & Hutter (SH; 1989)
developed a hydraulic theory for flows in vertical planes to describe the evolving
geometry of a finite mass of a granular material and the associated velocity
distribution as an avalanche slides down an inclined chute. In order to formulate
a realistic model, the following assumptions were made: (i) the moving dry and
cohesionless granular mass is incompressible and obeys a Mohr-Coulomb yield
criterion both inside the deforming mass as well as at the sliding basal surface.
(ii) The geometries of the avalanching masses are shallow in the sense that
typical avalanche thicknesses are small in comparison to the extent parallel to
the sliding surface. (iii) To obtain a dimensionally reduced theory, the field
equations are integrated through the depth of the pile, and a nearly uniform
velocity profile through the depth is assumed. (iv) Scaling analysis identifies the
physically significant terms in the equations and isolates those that can be
neglected. These assumptions are supported by observations of large-scale snow
avalanches in the fields as well as small-scale laboratory avalanches of different
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dry granular particles sliding and deforming down different chutes and channels.
These facts are well documented and can be found in the literature (Savage &
Hutter 1989; Hutter & Koch 1991; Dent et al. 1998; Keller et al. 1998; McElwaine &
Nishimura 2001; Pudasaini 2003; Ancey & Meunier 2004; Denlinger & Iverson
2004; Hutter et al. 2004; Iverson et al. 2004). The simple spatially one-
dimensional model of SH, applicable along a straight chute, has been generalized
to higher dimensions, to more complex geometries, and has been tested against
realistic laboratory experiments and back calculations of the field events. Good
to excellent agreements were obtained between the theoretical predictions and
the experiments and field data. For a review of own work, see Hutter et al.
(2004), but also the SAME report by Harbitz (1998), and Denlinger & Iverson
(2004), Pitman et al. (2003) and Patra et al. (in press). Here we will focus on a
recent three-dimensional extension of the SH model by PH and its application to
avalanche motion over a realistic three-dimensional flow path as pointed out
earlier.

(a) Effects of the topography

Curved flow-path surfaces strongly influence the flow dynamics because
transverse shearing and cross-stream momentum transport occur when the
topography obstructs or redirects the motion due to its curvature and torsion.
Local deceleration and deposition of mass may occur due to energy dissipation.
Resistance due to basal friction is modified by ‘centrifugal forces’ induced by bed
curvature and torsion.

Recently, Pudasaini & Hutter (2003) extended the SH theory to flows of dry
granular masses in a non-uniformly curved and twisted channel. Consider an
avalanche-prone landscape and a subregion of it where the topography allows
identification of the likely avalanche track. A space curve parallel to the
talweg of the valley is singled out as a master curve, C' (which can be
obtained, for example, by shifting the talweg along its normal direction), from
which the track topography will be modelled. The curvature and torsion of the
master curve k=k(z), 7=7(x), are either assumed to be known or can be
computed from digital elevation geographic information systems (GIS) data as
functions of the arc length z of the master curve. Then, an orthogonal
coordinate system along the master curve is introduced and the model
equations are derived in this general coordinate system. In the model
equations of this paper, (z, y) form a curved reference surface, where z is
the coordinate along the talweg of a mountain valley, while y is the circular
arc length in a cross-sectional plane perpendicular to the talweg of which the
value is determined by the relation y=efzr, where ¢ is the aspect ratio
between the avalanche height and the extent, 6 is the azimuthal angle which
accounts for the cross-slope curvature and z7 (usually zp>>1) is the radial
distance between the master curve and the talweg and z is the coordinate
perpendicular to the reference topography. Every quantity in this paper is
written in non-dimensional form. The channel topography and the geometry of
the avalanche in the lateral and longitudinal directions are illustrated in
figure 1. Let us discuss some terms and parameters arising in the model
equations presented in the §2b. g,, g, and g, are the projected components of
the gravitational acceleration along the down-slope, cross-slope and normal
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Figure 1. (a) the avalanche domain in the lateral direction occupies a region in a circular section of
a plane perpendicular to the talweg of the valley and 6 is the azimuthal angle in this plane. 00=z
is the radial distance between the master curve and the talweg. {T, N, B} is the moving
orthonormal unit triad following the talweg. £ is the slope angle of the talweg with the horizontal.
The depth of the avalanche in this section is represented by a height function h(z,y,t) and is
measured in the radial direction. (b) avalanche passing through the transition into the run-out zone
in a vertical plane containing the talweg of the valley. In this picture, z; and z, are the left and
right end points of the continuous transition between the straight inclined upper part with
inclination angle 60 and the horizontal run-out in the valley.

directions, for explicit computation see Pudasaini & Hutter (2003). The aspect
ratio ¢, and the measure of curvature relative to the typical avalanche length,
A, are both small numbers. The basal topography (which is the deviation of
the basal topography from the reference surface z=0, and includes the small-
scale geometric features of the bed topography) will be denoted by z=b(z, y).

The theory is designed to model the flow of (debris) avalanches over channels
having general curvature and torsion. Although there are other models that
consider the problem of avalanche motion over curved slopes (e.g. Maeno &
Nishimura 1987; Norem et al. 1987; Savage & Nohguchi 1988; Zwinger et al.
2003; Iverson et al. 2004; Pitman et al. 2003; see also the SAME report edited by
Harbitz 1998), the model equations considered in this paper are the first to
explicitly include curvature and torsion effects in a systematic manner. This
makes the extended model amenable to realistic snow and debris motions down
arbitrary guiding topographies. In fact, GIS data of mountains avalanche- and
debris-prone regions can be implemented to this model, which provides the
geometrical basis for realistic application. In contrast to the original SH theory
and all their previous extensions (e.g. Gray et al. 1999; Pudasaini et al. 2003a,b),
a moderately curved and twisted space curve is used to define an orthogonal
curvilinear coordinate system. The final governing balance laws of mass and
momentum are written in these coordinates.

(b) Description of the model equations

As in the previous models of the SH-theory, Pudasaini & Hutter (2003)
formulated the balance laws of mass and momentum as well as the boundary
conditions in slope-fitted curvilinear coordinates of mountain surfaces, averaged
these equations over depth, and then non-dimensionalized the equations. The
final balance laws of mass, and momentum in the down-slope and cross-slope
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directions, take the forms

oh 0 0
3 3, D (B
a(hu) +&(hu ) +a—y(huv) = hs, %< 5 ), (2.2)
9 0 o D (BN

where h is the depth of the avalanche measured normal to the reference surface
and the factors 8, and 8, are defined as

6:v = _e.gzKra 61/ = _ggzKy- (24)

The terms s, and s, represent, respectively, the net driving accelerations in the
down-slope and cross-slope directions and are given by

ab
Sy = gy — ‘%tan 6(—g, + Aknu®) + €95 (2.5)
0b
oy’
|lu| = Vu?+ v* is the magnitude of the velocity field tangential to the reference

(basal) topography. Similarly, A« is the local radius of curvature of the talweg,
while

v
s, =g, — ——tan 6(—g, + Aknu2) + eg,

= (2.6)

n = cos(f + ¢(z) + 9p), (2.7)
where ¢(z)=— [} 7(2)dz’ gives the accumulation of the torsion of the talweg
from an initial position zy and ¢, (here, o= —/2 is considered) is a constant.

The first terms on the right-hand side of (2.5) and (2.6) are the gravitational
accelerations in the down- and cross-slope directions, respectively. The second
terms represent the dry Coulomb friction in which the normal tractions comprise
the overburden pressure (g,), plus a contribution due to the curvature and
torsion of the master curve (Aknu?). Finally, the third terms are the projections of
the topographic variations along the normal direction. K, and K, in equation
(2.4) are called the earth pressure coefficients. Elementary geometrical
arguments and Mohr’s circles may be used to determine these values as
functions of the internal (¢) and basal (6) angles of friction (Hutter et al. 1993,
2005), i.e.

K. =

z Lact /pass

=2 se02¢<1$\/1 — cos’¢p sec%) -1, (0u/dx) = 0,

) - : : (2.8)
K, = Kym/]w = 5 (Kl. + 1+\/(Kl. —1)" + 4 tan 6), (dv/dy) =0,

where K, and K, are active during dilatational motion (upper sign) and
passive during compressional motion (lower sign). We note that ignoring
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the O(¢)-contributions in (2.1)—(2.6) reduces the equations to a point mass model
and does not allow the deformation of the pile to be determined. We also claim,
in disagreement with recent alternative version of these equations for torsion-free
master curves, presented by Gray et al. (2003), that the distinction between
active and passive state of stresses is physically significant.

Given the master curve, C, the material parameters é and ¢ and the elevation
of the basal topography, b, above the curved reference surface, equations
(2.1)—(2.3) allow h, v and v to be computed as functions of space and time, once
appropriate initial and boundary conditions are prescribed, where h is the
avalanche depth, and (u, v) are the depth-averaged velocity components parallel
to the flow surface. As an initial condition, one commonly prescribes the
geometry and velocity distributions of the avalanche at the initial time, usually
for a mass at rest. The boundary is defined as those locations where the
avalanche height goes to zero.

(¢) Comparison with previous models

Equations (2.1)—(2.3) constitute a two-dimensional conservative system of
equations that entails several advantages over previous model equations.
They are as follows. (i) The equations simultaneously include the curvature
and torsion of the channelized basal topography. Therefore, they can be utilized
to describe the flow of avalanches along non-uniformly curved and twisted
channels. (ii) There is a non-zero gravity term g, in the cross-slope direction that
takes into account the global effect of topographic variation in the lateral
direction. Thus, the lateral motion is explicitly gravity driven, not indirectly via
lateral pressure gradients. This might be very crucial in designing defence
structures and when dealing with the motion of avalanches that hit obstructions
or deflecting structures on their way. The torsion effect n of the topography is
included in the net driving force components s, and s, in the two flow directions.
The components of the gravitational acceleration also depend on both the
curvature and the torsion of the basal topography (see Pudasaini & Hutter 2003).
The y-coordinate, which was just a straight line before, is now curved in the
cross-slope direction and for a torsion-free master curve, which lies in a vertical
plane, these model equations exactly reproduce all previous extensions of the SH
equations as special cases (for a proof, see Pudasaini & Hutter 2003; Pudasaini
2003). (iii) We can form a three-dimensionally curved and twisted channel using
down-slope and cross-slope coordinates z and y. In principle, it is thus possible to
model a given channel or avalanche gully by considering its talweg and by
choosing 6 appropriately as a function of the down- and cross-slope coordinates.
These are considerably new flexibilities of the model equations that are crucial to
describe the motion of avalanching debris flows in curved and twisted channels
and mountain terrains in a more realistic manner.

3. Numerical techniques

The avalanche equations (2.1)—(2.3) comprise a nonlinear hyperbolic system.
Shock formation is an essential mechanism in granular flows on an inclined
surface merging into a horizontal run-out zone or encountering an obstacle when
the velocity becomes subcritical from its supercritical state. To produce more
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accurate and physically reliable solutions of strongly convective nonlinear
hyperbolic equations, it is therefore natural to apply conservative high-resolution
numerical techniques that are able to resolve the steep gradients of the unknown
variables and moving fronts often observed in experiments and field events of
avalanches. The NOC scheme proposed first by Nessyahu & Tadmor (1990) and
extended to higher dimensions by Jiang & Tadmor (1998) is implemented to
solve the model equations. This is a high-resolution shock capturing scheme. The
necessary background and full details of this method can be found in the
literature (e.g. Harten 1983; Harten et al. 1986; Yee 1987; Nessyahu & Tadmor
1990; LeVeque 1990; Kroner 1997; Jiang & Tadmor 1998; Toro 2001) and its
application to avalanches is given by Tai (2000), Tai et al. (2002), Pudasaini
(2003) and Pudasaini et al. (2004).

Essentially, this scheme requires the system to be written in terms of
conservative variables, which are the avalanche thickness, & and the depth
integrated down- and cross-slope momenta, m,=hu and m,=hv. With the
vector of conservative variables, w= (h, m,, my)T, the model equations
(2.1)—(2.3) can be rewritten in conservative form as

dw  of(w) _ dg(w) _
B P m = s(w). (3.1)

The down-slope and cross-slope momentum flux vectors fand g and the vector of
the source terms s are given by

m, my, 0
f=|m¥h+8,022 |, g= m,m,/h ., s=|hs, |. (32
mymy/h mg/h + ﬁyh2/2 hs,

The terms 8, and @, defined in (2.4), incorporate the extending and contracting
states of the avalanching mass through the active and passive earth pressures.
Similarly, the source terms s, and s,, described in (2.5) and (2.6), are of crucial
importance as they include the total driving force generated by gravity, friction,
curvature, torsion and local details of the basal topography through its gradient
terms. They jointly determine the dynamics of the flow.

We do not further elaborate here on the TVD techniques and optimal choices of
limiters and cell reconstructions. Pudasaini (2003) and Wang et al. (2004) made a
careful study investigating its optimal use in avalanche studies using the Gray et al.
(1999) version of the SH-equations, and the decision made there will be made here.
Finally, we should also mention that different methods, e.g. using the Riemann solver
(Koschdon & Schéfer 2003) or the wave propagation method (Vollmoéller 2004), have
also been successfully applied to the extended SH-equations.

4. Avalanche motion down curved and twisted channels
The model equations (2.1)-(2.3) predict the flow of an avalanche over a non-
uniformly curved and twisted channel in which the cross-slope curvature (or the
channel width) may equally be varying. The focus is the numerical simulations of

such flows, their physical explanation and the analysis and interpretation of
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Figure 2. Height contours of an avalanching motion in a helically curved and twisted channel
with uniform curvature and torsion and a constant circular cross-slope channel width. The plane
rectangles are in reality helically curved and twisted in the z-direction and circularly curved in
the y-direction. The inset in the last panel shows schematically the circular cross-section and a
cross cut of the avalanching mass.
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the results. The main target is the analysis of the joint effects of curvature, torsion,
cross-slope topographic variation and ‘centrifugal’ force in the dynamics of an
avalanching body down more general channels and topographies. The form of the
employed master curve and the variations of the cross-sections are still somewhat
academic or idealistic. This is so because some of them are also used in our laboratory
for experiments, but also because the general purpose programme that is applicable
to a realistic mountain corrie is not yet ready. Nevertheless, the examples will
demonstrate the new aspects that these model equations can disclose, effects that are
quantitatively well understood but could, qualitatively, so far not be disclosed. The
results will allow us to judge the applicability of the new model equations. On the
other hand, they will open a wide spectrum of possibilities for the practitioners
involved in the hazard mapping, risk management and public safety. This will then
lead to the implementation of the theory into realistic mountain topography,
together with GIS elevation data of some specific mountain subregions.

(a) Flows through uniformly curved and twisted channels

As a first example, we consider a helically curved and twisted channel. This
is an academic test example, but there are many industrial applications of
granular flows in process engineering scenarios where such flow configurations
are practically used. For this reason, we consider a heliz as a master curve so
as to form a helically curved and twisted channel. Let us consider a circular
helix described by

R(¥) = (A cos ¥, Asind,—Bd), (4.1)

where ¢ is the azimuthal angle. The length, curvature, torsion and pitch of the
helix are given by

z=(A+ B9, k=A4/)(A*+ B, 7=-B/(A*+ B, 9 =2rB,
(4.2)

respectively. Based on the master curve (4.1), a helically curved and twisted
channel is formed. The lateral section of the topography is the intersection of a
plane perpendicular to the talweg of the channel and the channel itself. Here, this
section is a circular arc, but note that when dealing with variable channel widths,
the curvature of this arc changes with the width of the channel.

One expects that the flowing granular mass will deviate continuously outward
from the central line (i.e. the talweg) of the channel due to the radial acceleration
induced by the slope-fitted curvilinear coordinates. Figure 2 displays thickness
contours of an avalanche sliding down through a helically curved and twisted
channel with uniform curvature and torsion given by (4.2) and a constant
cross-slope channel width." The parameter values are: A=300, B=300, so that

LAll figures shown for helical chutes are geometrically distorted. The graphs are vertical
projections of the chute and granular heaps whose circular-annular geometry are stretched to
become straight. Thus, a segment of the annular ring becomes a rectangle of which the top edge is
the chute outside and the bottom edge the chute inside boundary. This graphical representation is
chosen because it is relatively easy to programme.
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Figure 3. Height contours of an avalanching motion down a helically curved and twisted channel
with variable pitch and a constant circular cross-slope channel width.

the channel is inclined relative to the horizontal at 45°; the internal and bed friction
angles are ¢ =33° and 6=27°, respectively. The radius of curvature in the cross-
slopedirectionis zr=128 and € (—44.8°,44.8°) corresponding to y € (— 100, 100).
The mass held initially by a hemi-spherical cap centred at (23, 0) with radius 6.5 is
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suddenly released with zero initial velocity. The contours are plotted at the time-
steps 15, 18, 21, 24, 27, 28.5, respectively, only in the vicinity of the flow domain
where the granular mass occupies a subregion of it. We also adopt this idea for the
plotting of the consecutive figures. As time increases, the avalanching mass is
laterally getting less spread, but, it is rapidly moving outwards from the centre line
of the channel in the front much more than in the back. Thisis so because the speed of
the front is much greater than that of the tail. Such behaviour of the deforming mass
is the joint effect of the curvature, torsion and the radial acceleration that is
modelled in the theory (equations (2.1)—(2.3)) through the gravitational accele-
ration components g,, g,, g., and the net driving force components s,, s,, that
include the curvature and torsion of the talweg, bed topography and the cross-slope
curvature of the channel. The mass is always extending and accelerating in the
down-slope direction, because the channel does not merge into transition- and
run-out-zones. In the sequel, we will deal with cases in which the transition and
run-out zones are included in the geometrical part of the model.

(b) Awalanching flows through non-uniformly curved and twisted channels

In reality, channels may be arbitrarily curved and twisted with variable cross-
slope curvature and channel width. In particular, realistic avalanche tracks go from
steep to flat regions, and on these, the avalanches come to a halt. The geometry
must play a crucial role to make the body stand still. The concave curvature of the
mountainside increases the bed friction and consequently forces the avalanche to
slow down and eventually come to rest. In this subsection we will present avalanche
simulations through more general channels that possess run-out zones.

(i) Variable pitch
One geometric model is such that the pitch defined in (4.2) can be modified as

B, 0<z<um,
N2
B(z) = ¢ B, (H) , <z, (4.3)
0, T2 Ty,

so that prior to the left end point, z;, of the continuous transition zone, the chute
is exactly the same as that used in the previous subsection. However, there is a
continuous decrease of the pitch from x; to z,. Then, for z> z, the pitch is always
zero, and thus, the subsequent channel is forming a channelized circular run-out.
Of course, physically this can only be realized, if (g, —2,) <27A, where zg,, is
the end point of the talweg in the run-out zone.

Avalanche simulations for this case are presented in figure 3. The chosen
parameter values are as in figure 2, and By=300, ;=250 and z,=350.
The different forms in figure 3 are presented only for the time slices after
the avalanche entered the transition zone. Prior to that, the flow is the
same as those displayed in figure 2 (t=15-28.5). Since the pitch of the
channel is continuously decreasing for z>x;, from t=35 onward, the granular
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Figure 4. Height contours of an avalanching motion in a helically curved and twisted channel with
decreasing curvature and torsion and a constant cross-slope channel width.

mass tends to slow down and turn smoothly towards the central line of
the channel. Corresponding to the decrease of the pitch, the inclination angle
of the chute with the horizontal plane is also continuously decreased.
Ultimately, the channel merges into a horizontal circularly curved
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channel, thus forming a gully type channelized run-out zone. Beyond t=28.5
(figure 2) the sidewise pressure from the channelized bed topography
exceeds the force due to the radial acceleration. This happens more
effectively at the front than in the rear part, because the velocities are now
smaller there than in the rear part. It leads to a continuous rotation of
the body towards the centre of the channel. This sidewise pressure is so
strong that after t=60 the mass crosses the talweg of the channel and heads
towards the opposite side of the channel. Finally, the body comes to rest at
time t=70.

(ii) Variable curvature and torsion

Next, consider a channel of which curvature and torsion are redefined with
a new expression for A in (4.2) as follows:

Am OS.’ES.’El,

A(z) = < Agexpl(z — 1), =, <z<lz, (4.4)

\%

A() exp[(mr - xl)a]ﬂ =Ty,

where a is an exponent that determines the intensity of decrease of the
curvature and torsion. For the simulations, we have set a=1 and A;=300 so
that before the transition (z<r;) the channel is the same as in the previous
case (figure 3). Equation (4.4) tells us that the radius of curvature and the
torsion of the channel increase rapidly as the arc-length = becomes larger than
x1. Before this transition point, the channel has uniform radius of curvature,
torsion and pitch. This increase forces the channel quickly to merge
(approximately), with the curve gradually decreasing until it eventually
becomes a horizontal channel. This horizontal portion of the channel also
forms the run-out zone for the avalanche.

The results of the avalanche simulation for this configuration are presented in
figure 4. There are great differences in the avalanche motion between figures 3
and 4, particularly in the run-out zones. For the present case, since the radius of
curvature and torsion increase rapidly from x=uz,, the avalanche quickly turns
back to the central line of the channel and suddenly comes to rest, much earlier
and much closer to the transition zone than in figure 3. It is also interesting to
observe that in figure 4, between t=60 and 70 the deposit still seems to spread
slightly in all directions.

The differences manifest themselves for ¢ > 35. In particular, for ¢t =40, the pile
in figure 3 has left the transition zone by approximately one-third of its mass,
whereas it is still almost inside the transition zone in figure 4. This can physically
be understood: the increasing radius of curvature of the channel axis in the
transition zone for case mentioned in this section reduces the local slope angle
of the channel axis much faster than for case seen in §4b(i), so that within
the transition zone of the case mentioned in this section, the avalanching mass
encounters deposition-prone conditions quicker than the case seen in §4b(i).
Comparing the deposits for ¢>45 in the two figures shows that the run-out
distance of the avalanche mass is greatly affected.
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Figure 5. Height contours of an avalanching motion in a helically curved and twisted channel with

decreasing pitch and increasing cross-slope channel width.
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(iii) Decreasing pitch and variable cross-slope curvature

Real channels may be diverging or converging (with respect to their channel
width or cross-slope curvature) along the down-hill direction. Therefore, the
avalanche theory must be able to deal with more general channels and natural
valleys or gullies with generally varying cross-slope curvature. At this point, we
simulate the avalanche motion in a channel of which the pitch B, is defined by
(4.3), as for the case seen in §4b(i), and the parameter A is constant; but now we
vary the channel width starting from its left boundary of the transition zone at
which the pitch starts to decrease. This can be achieved by defining a channel
which merges continuously into an open flat run-out zone according to

y/zT, 0<z< 1
0(337 y) = (y/ZT)f(fE), $1S$S$r, (45)
007 ‘/I;Z ‘/I;r’

where z7 is the distance between the master curve and the talweg in the upper
inclined part of the channel (hence a constant) and f(z)=(1—(z—z))/(z,— ).
Thus, the continuous transition of the parametric function 6 from its higher value
y/zr in the upper part to its zero value in the open run-out zone constitutes a
three-dimensional channel that has variable pitch and variable curvature both in
the longitudinal as well as in the lateral directions. Figure 5 depicts the contours
of the avalanche motion from its transition to the open run-out zone, where only
the outward half of the channel is plotted, because in this and the following cases
(for t<35), the granular masses appear only in this half of the channel. The
graphs describe the deformation of the avalanche disclosing the subtle reaction of
it to different geometry of the run-out region. Although the pitch is decreasing,
after reaching the transition zone the avalanching body is heading radially
outwards of the flat run-out zone until it comes to rest close to the outside edge of
the chute. The main mechanism for this is that, as soon as the mass enters the
run-out zone the radial acceleration decreases rapidly, but, since the chute is
flattening in the cross-slope direction, the decreasing radial acceleration must
keep the mass further and further away from the centre line. The direction and
the process of the deposition is in conformity with our physical intuition and
expectation.

(iv) Decreasing curvature and torsion, and variable cross-slope curvature

A further interesting geometrical model is a channel of which the curvature
and torsion decrease from the beginning of the continuous transition zone as
described by equation (4.4). The channel opens and merges continuously into the
horizontal plane as described by (4.5) but B= By is kept fixed. This case is more
important in geophysical applications because curvature and torsion generally
decrease as one enters into the horizontal run-out zone of a mountain valley. The
avalanching motion from the transition to the run-out zone in such a channel is
presented in figure 6. The principal mechanism for the deformation and the
deposition of the mass is analogous to case as seen in §4b(iii); i.e. figure 5, but it
stops earlier in time and at a shorter run-out distance than before. Given the
results of cases seen in §4b(i) and (ii), this was to be expected.
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Figure 6. Height contours of an avalanching motion in a helically curved and twisted channel with
decreasing curvature and torsion and increasing cross-slope channel width.
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5. Concluding remarks

We presented and applied a new model describing the flow of a cohesionless mass
of granular materials through curved and twisted channels. The model equations
incorporate the simultaneous effects of curvature and torsion of the master curve
of the channelized topography systematically in the avalanche motion. This was
not possible in the earlier models. The applicability of the present model
equations is, therefore, much broader than in previous cases. The advantage of
this formulation lies in its flexibility of application. The analysis of the motion of
avalanches in channels with different cross-slope curvatures and widths is now
possible. The flow down an inclined surface or within a channel with its axis in a
vertical plane that may be curved can be described. The examples have shown
that the model generates results that are physically expected. The flow down
complicated mountain valleys with arbitrarily curved and twisted talwegs and
varied bed topographies can genuinely be predicted by these model equations.
The geometries are only restricted by the fact that they are not strongly curved
and twisted, but a split from a single mass in a corrie to two masses along two
different tracks is in principle possible to be described. Thus, the theory provides
new directions in the quality of predictions in the field of avalanche and debris
flow research. It also opens a large spectrum of applications in different
geophysical problems connected with the use of GIS and digital elevation data.

To avoid any spurious oscillations and to include naturally induced shock
phenomena into the solution of the nonlinear hyperbolic model equations, with
possible discontinuities in the unknown variables and coefficients, we implemented
two-dimensional high-resolution NOC shock-capturing numerical schemes with
TVD limiters. One of the most basic and fundamental questions related to the new
theory is: are these model equations really able to predict flows in chutes and
channels that simultaneously incorporate curvature, torsion and the cross-slope
curvature effects of the bed topography? To answer this question, several numerical
tests were performed for avalanching masses down curved and twisted bed
topographies. Uniformly and non-uniformly curved and twisted channels, as well as
channels that incorporate continuous transition zones merging into the horizontal
run-out zones are considered. Both confined and unconfined transition zones, with
constant and variable inclination angles of the topography, are taken into account.
Computational findings clearly demonstrate the combined effects of curvature,
torsion and the radial acceleration associated with the bed topography. Such
sophisticated studies have not been carried out before.
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