Heat equation in 2DΒΆ

This tutorial simulates the stationary heat equation in 2D. The example is taken from the pyGIMLi paper (https://cg17.pygimli.org).

import pygimli as pg
import pygimli.meshtools as mt

Create geometry definition for the modelling domain.

world = mt.createWorld(start=[-20, 0], end=[20, -16], layers=[-2, -8],
                       worldMarker=False)
# Create a heterogeneous block
block = mt.createRectangle(start=[-6, -3.5], end=[6, -6.0],
                           marker=4,  boundaryMarker=10, area=0.1)
# Merge geometrical entities
geom = world + block
pg.show(geom, boundaryMarker=True)
plot 5 mod fem heat 2d

Out:

(<matplotlib.axes._subplots.AxesSubplot object at 0x7f988a7e8eb8>, None)

Create a mesh from based on the geometry definition.

mesh = mt.createMesh(geom, quality=33, area=0.2, smooth=[1, 10])
pg.show(mesh)
plot 5 mod fem heat 2d

Out:

(<matplotlib.axes._subplots.AxesSubplot object at 0x7f98b6a34eb8>, None)

Call pygimli.solver.solveFiniteElements() to solve the heat diffusion equation \(\nabla\cdot(a\nabla T)=0\) with \(T(bottom)=1\) and \(T(top)=0\), where \(a\) is the thermal diffusivity and \(T\) is the temperature distribution.

T = pg.solver.solveFiniteElements(mesh,
                                  a={1: 1.0, 2: 2.0, 3: 3.0, 4:0.1},
                                  bc={'Dirichlet': {8: 1.0, 4: 0.0}}, verbose=True)

ax, _ = pg.show(mesh, data=T, label='Temperature $T$', cMap="hot_r")
pg.show(geom, ax=ax, fillRegion=False)

# just hold figure windows open if run outside from spyder, ipython or similar
pg.wait()
plot 5 mod fem heat 2d

Out:

Mesh:  Mesh: Nodes: 3011 Cells: 5832 Boundaries: 8842
Assembling time:  0.058
Solving time:  0.024

Gallery generated by Sphinx-Gallery